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1 INTRODUCTION

1.1 Purpose of This Document

The convection initiation theoretical basis docum@hTBD) provides a high level
description of and the physical basis for the assest of convection initiation derived
from the Advanced Baseline Imager (ABI) flown oretGOES-R series of NOAA
geostationary meteorological satellites. The Cotioe Initiation (CI) algorithm
provides an assessment of the clouds that maypiiaei. The CI algorithm is designed
to monitor the growth of non-precipitating clouds)d once a series of spectral and
temporal thresholds are met, that cloud is idesdifas likely to have a radar reflectivity
greater than 35 dBZ within 0-2 hours.

1.2 Who Should Use This Document

The intended user of this document are those stedein understanding the physical
basis of the convection initiation algorithm andviim use the output of this algorithm to
determine clouds which may produce radar refleudisi greater than 35 dBZ. This
document also provides information useful to anyon&ntaining or modifying the
original algorithm.

1.3 Inside Each Section
This document is broken down into the following maéections.

» System Overview: Provides relevant details of the ABI and providesrief
description of the product generated by the allyorit

» Algorithm Description: Provides all the detailed description of the alfm
including its physical basis, its input and its putt Validation will also be
addressed.

* Assumptionsand Limitations. Provides an overview of the current limitatioris o
the approach and gives the plan for overcomingetHigsitations with further
algorithm development.

1.4 Related Documents

This document currently does not relate to any rotdecument outside of the
specifications of the F&PS and to the referencesrgthrough out.

1.5 Revision History

Version 1.0 of this document was created by WaynésicKenzie, Jr., John R. Walker
and John R. Mecikalski of the University of AlabamaHuntsville and its intent was to
accompany the delivery of the version 1.0 algorittanthe GOES-R AWG Algorithm

Integration Team (AIT).



2 OBSERVING SYSTEM OVERVIEW

Overview of the algorithm(s),

including the objees, characteristics of the

instrument(s) referencing rather than repeatiggirements that provides the input data

and retrieval strategies.

2.1 Products Generated

The convection initiation (CI) algorithm producebiaary field at 2 km spatial resolution
of areas where Cl has a high likelihood of occyrinThe product uses a spectral
thresholding technique, which tracks clouds witiieir early stages of development, and
monitor their spectral characteristics. If a largajority of the spectral “interest fields”
thresholds are exceeded, then the pixels withirckived object are flagged for having a
high likelihood for CI.

Convective [ GOES- | C N/A 2 km 1 km Binary 70% 5min |[159 N/A | Day
Initiation R Yes/No | Probability sec and
detection | of Correct night
Detection
Convective [ GOES- (M N/A 2 km 1 km Binary 70% 5 min [ 159 N/A | Day
Initiation R Yes/No | Probability sec and
detection | of Correct Night
Detection

Table 1. CI Algorithm Requirements.

2.2 Instrument Characteristics
The algorithm will use the various spectral chasmwethin GOES-R (listed in Table 1).
Table 1 summarizes the projected channel.

Channel Number

Wavelengthgm)

Projected to be used in ClI
processing

0.47

0.64

0.86

1.38

1.61

2.26

3.9

6.15

7.0

POOINO|ORAWINF

7.4

XXX




11 8.5 X
12 9.7 X
13 10.35

14 11.2 X
15 12.3 X
16 13.3 X

Table 2. Channel numbers within GOES-R ABI andelesngths used for the Cl algorithm.

The algorithm relies on the infrared channels dahthe algorithm to have both day and
night continuity. The performance of the algoritimay be sensitive to any instrument
noise.

3 ALGORITHM DESCRIPTION

This is a complete description of the algorithnthat current level of maturity (which will
improve with each revision).

3.1 Algorithm Overview

Mecikalski and Bedka (2006) first showed that oae track growing cumulus, monitor
their spectral properties, and using a set of Huolelsbased indicators to determine the
likelihood that a particular cumulus will precigiga The thresholds incorporate spectral
differences that give information into the clougr-tphase of clouds as well as their
respective location within the troposphere to detee cloud maturity. In addition to
that information, the growth of the cloud throudte ttroposphere over two successive
images can be achieved using several of the spettamnels as outlined in Table 1.
Knowledge of this information can provide infornmatiinto the stage of development of
a cumulus cloud, and thus identify whether a clalbprecipitate within a hour one time
period.

3.2 Processing Outline

The processing outline of the CI algorithm is sumpeal in Figure 1. The current CI

algorithm uses satellite data in netCDF formatifgout into Fortran based processing
code. The ABI data (current data along with onevigus time period) and the cloud-
typing algorithm (current data along with one poe time period) are required to begin
processing the CI algorithm.



Load Cloud Type
and ABI data

}

Identify objects,

Output pixels which
are likely to initiate
based upon
achieving a number
of interest fields.

Figure 1. High Level Flowchart of the CI Algorithittustrating the main processing sections.

3.3 Algorithm Input

This section describes the input needed to prates€l1 algorithm. Currently, the code
is developed in Fortran 90.

3.3.1 Primary Imager Data

* In its current stage, the CI algorithm requires thge of the brightness
temperatures from channels 8-12 and 14-16 witrenfh(Table 1), as well as the
current image and the previous image in order twcess all stages of the
algorithm outlined in figure 1.

3.3.2 Ancillary Data
The use of the ABI AWG Cloud Team Cloud Type Prddameeded for the CI
algorithm. The current time dataset along with firevious time dataset is
required for processing. Any cloud type data depecies as outlined in the
Cloud Type ATBD are also inherently necessary ler €I algorithm.



3.4 Theoretical Description
3.4.1 Physics of the Problem

The CI algorithm tracks moving clouds using an obj&lentification and tracking
technique and monitors the growth of the cloudagisi spectral thresholding technique
using the thresholds listed in table 2. It is imant to note that this algorithm is
designed for identifying clouds, which have thegodial for growth, thus mature clouds
are omitted. It is important to note that othardsts have used similar methods for
monitoring mature mesoscale convective complexesv@ho and Jones 2001, Machado
and Laurent 2004 and Vila et al. 2008).

Objects are identified using the AWG Cloud Typingagithm. If clouds are identified as
water, supercooled or mixed phase, those pixelsieeened immature for the purpose of
Cl identification. The algorithm searches arouadrepixel to determine a gap in pixels,
and this is the method for determining whetherxa&lps an independent object or part of
a larger object. For the 100% delivery, the alponi will take the larger objects and
focus on the convectively active regions of thgéarobject. A size threshold will be
used to determine whether an object is too largkeagpeak detection technique using the
11.2 um channel to pull out the convectively active regio This will also help with
mitigating any false cloud detections by the AW@®@ul Typing algorithm since falsely
identified large objects will be removed if there @ao minimum temperature peaks.

The CI algorithm uses an object tracking technigueich is an overlap method. This
overlap technique exploits the high temporal resmiuof GOES-R. Currently, the
tracking algorithm does not perform well for fasbwying clouds and if the temporal
resolution is greater than 5 minutes.

Once the objects have been identified and traclkedcoldest 25% of the pixels within
each of the object are averaged using a quickngprtiutine in which all the brightness
temperature pixels are listed, and then organizad toldest to warmest, and the coldest
25% of the pixels are used to average all spedrahnels used within the CI algorithm.

Using the object average brightness temperatura &ach of the spectral channels used
in table 1, a series of infrared spectral threshedtds will be performed (as listed in Table
2). The objects spectral information differencdl wiccur using the object average

temperature, and temporal differencing will occuermthe previous time object average
brightness temperature for each spectral channel.

If the object meets 7 of the 12 spectral tests,patkls within the object will be
highlighted as a high likelihood of initiation (tr@tion is defined as the object achieving
a 35 dBZ radar echo).



In the following sections, the four main componearitshe algorithm will be discussed in
detail. The four main components are:

1) Obiject Identification

2) Object Tracking

3) Spectral Interest Field Tests

4) Determining whether there is a high likelihood @wnvective Initiation.

6.2-10.8pum Cloud Deptl -3C°C to-10°C
6.2-7.3um Cloud Deptl -25°C to-5°C
11.2um Cloud Depth/Glaciatic -2C°Cto =°C
8.7-10.8um Glaciatior -1C°C to-1°C
Tri-channel Dif Glaciatior -1C°C to (°C
5 min Tri-Channe Glaciation Tren >0°C

5 min 12.-10.8um Cloud Deptl >0.5°C
12.(-10.8um Cloud Deptl -3°C to (°C
5 min 10.8um Cloud Growil <-1.32C

5 min 6.--7.3um Cloud Depth Tren >0°C

5 min 6.:-10.8um Cloud Depth Tren >0.5°C
13.£-10.8um Cloud Deptl -2C°to-5°C

Table 3. Current Cl indicators currently being tedtfor use within MSG operations.

Object Identification

The purpose of this algorithm is to take large otgesuch as within a large cloud deck,
and focus on the convective elements to perfornspleetral and temporal tests to
determine likelihood for convective initiation. iShalgorithm begins with a driver
subroutine that handles the selection of cloud peakl starts the “blobing” algorithm
that defines the area of the object and definespatigat no other object can begin to be
defined in. The driver function takes in a blankagrthat is where the objects will be
defined, the cloud mask, the brightness temperatuey, and the maximum number of
rows and columns. It then turns the 2D brightnessgperature array into a 1D array that
can be sorted and it creates a 1D list of the maighdices of the temperature in question.
Both of these arrays are sorted based on the haghttemperature. The algorithm takes
the temperatures in order from coldest to warmedtc@mpares the associated indices
against the cloud mask and the output array tamhéte if the object is a cloud and if the
area is not designated as something else alreatg ioutput. Finally it verifies that the
point is actually a peak and then it passes theubairray, the row and column in

9



guestion, a maximum temperature derived from ana@eeof the temperatures within the
cloud sections, an ID for the object, the cloud kn#se brightness temperature array, and
the row and column in question again (meaning shaitin the “blobing” algorithm.).
Once the blobing algorithm returns the object Ihigemented and we look at the next
coldest point.

Within the blobing algorithm it just calls a funati that takes in the same arguments as
the subroutine. Since this algorithm starts indéeter then checks surrounding points,
then the surrounding point's surrounding pointa fblobing” out style, It also compares
against the cloud mask, then check if the pointdhesady been visited. It then compares
against how far the algorithm has come from thginoai point to keep it from spreading
too far. If all that succeeds, the algorithm deiees if the point should be given the
objects ID number or be allocated as “skirt” basedlistance from center. It then does
the same thing for the points around it passirthénoriginal point as the second point
passed in that | referenced above. Once it hasrdigied the while area it returns to the
driver subroutine.

The above description will be included within tH@0% delivery.

Object Tracking M ethodology

The object tracking algorithm is based upon thepinconcept of temporal overlapping.
Because of this restriction, there is a weakneghan if the mean flow is fast and the
object size is small, there may not be temporatlapebetween the two times. This is
somewhat mitigated from the fact that growing clewdll increase in horizontal size as
well as vertically which minimizes this impact. gbre 2 shows the threshold where an
object may be missed for a given object size amdp This assumes the object size
remains constant between time 1 and time 2.

Object Size vs. Object Speed

Object Speed (km/hr)

Object Diameter Parallel to Wind Flow (km)
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Figure 2.. Threshold for object ground speed fafiden object diameter which is parallel to the witaiv.

Temporal overlap is where an object that occupigsaae at Time 1 (T1) can be assumed
to be the same object at Time 2 (T2) as long gsas#tion at T2 coincides or “overlaps”
with part of the space it occupied at T1 (Fig. 3).

Figure 3 Schematic diagram showing how a singjedtran be tracked through time via the temporal
overlapping technique.

The first step to applying this method to the tragkof cloud features is to identify all
desired cloud types resulting from a trustworthyekite-based cloud classification
scheme, and then mask out all other irrelevantmafesired cloud types. In the given
algorithm, all interesting cloud feature pixelsfrdboth T1 and T2 are assigned the
integer, “-1”. Next, the resulting arrays are suadmso that all temporally overlapping
regions can be identified wherever the integer ‘i2present (Fig. 4). Obviously, non-
overlapping region pixels are left at values of’“after the arrays are summed. Fig. 5
better demonstrates this overlap region identificatvith real, scaled down output from
the computer algorithm, using simplified input cds¢a.

Figure 4. Schematic showing that the summing Eablarrays at T1 and T2 result in values of “-25rf
all overlap region pixels, when all object pixele anitially assigned values of “-1”. The ellipsm the left
represents an object at T1, while the ellipse anrtght represents the same object at T2.

11



0 i

] 1
L] 1

Figure 5. lllustration of how the overlap regioaee identified. Object array pixels from T1 (a) afindm
T2 (b) are summed. The result is a single arraptafigers (c) with values of “0” where no objectdst
(grey), values of “-1” where objects exist but thes no overlap (green or red), and values of “\@here
there is overlapping between T1 and T2 (yellow).

The next step performed in this algorithm is toigis®ach individual overlap region a
unique, positive integer identification number @Dmber). The algorithm loops through
the summed array, searching for overlap pixelgjedlat “-2”. Then, whenever the first
group of overlap pixels is encountered, a countenjch is initialized at “07, is
incremented up to “1”, and each pixel in that caprgroup is assigned an ID number of
“1”. The next time a group of overlap pixels ixceantered, the counter is incremented
up by one more integer value, and the process ragegi until each overlap region is
assigned a unique integer ID number (Fig. 6).

[ 1T 2 [ 3 [a

Figure 6. Continuing the example from Fig. X.3& tverlap regions have all been assigned unique ID
numbers.

12



Next, the algorithm loops through the ID numberrtae array and iteratively “spreads”

each overlap region’s ID number left, right, updadown across the entire space
occupied by each given object through both T1 a&d The final product from this step

is a single collective array where the pixel spaceupied by individual objects that

overlapped their selves from T1 to T2 is accordiragsigned an integer ID number that
is unigue to a given object (Fig. 7).

Figure 7. lllustration showing the result aftergseading” ID numbers from the overlap regions te th
rest of the space occupied objects both at T1 afi@a

The final step in the object tracking algorithmtasseparate the recently created T1/T2
collective array into its original T1 and T2 compats, now that unique integer ID

numbers have been assigned to each object (Fig=®)n there, cloud top characteristic
trends and interest fields can be derived congigtéar whole, individual objects.

A B

Figure 8. Final output from the object trackingyatithm. Each object has been assigned a unique 1D
number that remains consistent from T1 (a) to T2 (b

13



Spectral Tests

In order to perform the spectral tests, all pixeithin each object are sorted from coldest
to warmest using the 1112n spectral channel. Then the 25% coldest pixels ar
averaged to come away with an average brightnegsat@ture for the particular channel.
Using the same pixels used to perform the averagindne 11.2um channel, the average
brightness temperature is found for each of theratpectral channels as defined in Table
1.

For each object, the spectral tests defined inélatdre performed (including temporal
tests using the previous image). If the resulahie from each test is within the critical
value, then that test receives a 1, and all tedtsgsh the critical value was not achieved,
then a value of O is recorded.

Deter mination of Likelihood for ClI

The spectral tests performed above are summecerapiical results have shown that if
7 or greater of the tests have triggered, theretlsea high likelihood for convective
initiation. The object is then flagged for Cl irseparate array, which contains the
summed values of each of the spectral tests bmesnylts. For example, if 5 of the
spectral tests were within the critical value, thie®resultant summed value of the binary
spectral test is 5, which is less than the 7 oatgrerequired to be likely for CI.

3.4.2 Physical/Mathematical Description

Interest Field Development

Meciklaksi and Bedka (2006) outlined several sgthreshold interest fields, which are
used within the current GOES satellite (table Bhis interest fields provide information
into the growth characteristics of the cloud. Kimogwvthis information will provide lower
false alarms because knowing the vertical locatibthe cloud within the atmosphere
will remove the erroneous cooling rates from therlidron channel. Studies have shown
that the spectral channels within the current GO@&8llite provide such information and
allows for effective monitoring of growing cumuludouds. Having more spectral
information within GOES-R will facilitate the usé¢ more cloud property information,
which will further reduce false alarms.

14



Cl interest field Critical value

10.7um T (one score) °C

10.7um T time trend (two scores) <-4 °C (15 mip)AT (30 min)* <AT (15 min)*
Timing of 10.7um T drop below 0 °C (one score) Within prior 30 min

6.5-10.7um difference (one score) -35°Cto-10 °C

13.3-10.7um difference (one score) -25°Cto-5°C

12.0-10.7um difference (GOES-11) -3°Cto 0°C

6.5-10.7um time trend (one score) > 3°C (15 min}

13.3-10.7um time trend (one score) > 3°C (15 min)

12.0-10.7um time trend (GOES-11) > 2°C (15 miny

Table 4. Current Operational GOES infrared interfistds used within the current CI algorithm.

The 6.7-10.7 micron spectral difference provideformation on cloud top height
location relative to the tropopause (Mecikalski aBddka 2006). Typically the
difference is negative because the surface temperdas warmer than the upper-
troposphere where the water vapor channel weightimgtion peaks. A positive
difference corresponds to clouds at or above thEoprause (Ackerman 1996; Schmetz et
al. 1997). This information can identify cloudsiathare immature or which are growing
into the midlevel of the atmosphere. The temptmaid of this interest field allows for
the growth of the cloud with respect to the tropgEato be monitored over time.
Essentially, this field allows for the determinatiof how fast the cloud is moving
through the troposphere. This has implicationsruring that the 10.7 micron temporal
cooling rate is accurate and minimize large coolatgs originating from clouds growing
rapidly within the boundary layer below the cappingersion. This situation will not be
shown within the 6.7 micron spectral channel beeatle weighting functions peak
higher in the tropopause.

The 12.0-10.7 micron spectral difference, knownttas “split window” technique, is
typically used for identifying the presence of a8y volcanic ash, and deep convective
clouds. Inoue (1987) has found that near-zero-10.@ micron spectral differences
provide a means to identify areas convective rdinfahis is an enhancement to the
Griffith et al (1978) method which uses a <*2010.7 micron brightness temperature.
The purpose for this interest field is to highliglteas, which are evolving into a
convection rainfall cloud. The temporal trend bé tspectral channel allows a more
effective approach to monitoring this transition.

The 13.3-10.7 micron spectral difference does mi®wnformation for growing cumulus
clouds since Mecikalski and Bedka (2006) found thist spectral difference has different
characteristics from mature cumulus to pre-ci cwsukimilar to the 6.5-10.7 micron
spectral difference. Mecikalski et al. (2008) fdwmsing a principal component analysis
found that the 13.3-10.7 micron channel is onéhefrhost important interest fields. It is
hypothesized that this spectral difference was dotonbe important because of the 8 km
spatial resolution of the 13.3 micron channel om ¢chrrent GOES. If the 13.3 micron
channel saturates, then it is very likely that $herm would initiate because of the poor
spatial resolution. Since the 13.3 micron chanvi#lhave a spatial resolution of 2 km

15



on GOES-R, it is uncertain how important this chenmill be due to the relatively few
studies performed on this spectral channel.

Mecikalski et al. (2010) contains a detailed exptaon of the best uses for the infrared
fields for pre-convective clouds. Further, Siewettal. (2009) discusses how to use
Meteosat Second Generation (MSG SEVIRI) data fowveotive initiation purposes over
South Africa using a different tracking methodoldyowever, Siewert et al. (2009) does
demonstrate the importance of using multiple spét#sts within a convective initiation
algorithm. Mecikalski et al. (2010) examined &lé tpossible spectral tests and divided
them into three physical categories: 1) cloud depyltloud top glaciation and 3) updraft
strength. From these three physical categoriets teere performed to determine which
spectral tests are redundant and which ones cotftaimost information. Thus, the
result from the study was to determine the averedge from all of the pre-convective
events and also examine which particular speadsibtare important. For the GOES-R
Cl algorithm, this study supplied the spectral iest fields (or spectral tests) to be used.
The main components of using the additional speclrannels on MSG are to exploit the
three categories. The results from this studytatasn from the average value and taking
a standard deviation from the average to develegtitical values. Some changes were
required to account for the change from 15-min@egoral resolution to 5-minute
temporal resolution since the original study wasgeed using 15-minute data.

The Mecikalski and Bedka (2006) algorithm is cutiyem operation using the spectral
channels on the current GOES series. The curlgotithm has a high probability of
detection (upwards of 90% when all interest fiélcesholds are met) but high False
Alarm Rate (Mecikalski et al. 2008). The high &ldarm rate is caused from a pixel
based tracking and verification and an object baseification will give more accurate
probability of detection and false alarm rate, ashave found from our current
validation. GOES-R will allow for the addition ofher spectral interest fields in order to
constrain false alarm rates.

Deter mination of Likelihood for ClI

Empirical results have shown that 7 or greatehef2 spectral tests give the optimal
statistics. Using 213 cases over Europe duringtinemer of 2007, tests were performed
ranging over all sums of spectral tests. Tablertains the accuracy for each of the
summation of spectral tests. Accuracy is defiretha sum of hits plus correct negatives
divided by the total of all four values within thalidation contingency table. Notice that
7 or greater spectral tests is where the accusagyakimized.
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1 or greater 57.7%

2 or greater 60.56%
3 or greater 61.97%
4 or greater 67.6%

5 or greater 69.95%
6 or greater 76.06%
7 or greater 80.75%
8 or greater 73.24%
9 or greater 53.05%
10 or greater 48.83%
11 or greater 43.2%

12 or greater 42.25%

Table 5. Comparison of the number of spectral tegjgered to impact on the accuracy.

3.4.3 Algorithm Output

The final output of this algorithm is a binary fiebf whether a particular object will be
likely to initiate (achieving a 35 dBZ radar reflietty). All pixels within the object will
be highlighted with a 2 km pixel resolution. Quglilags, product quality information
and metadata are also included as output.

Quality Flags

Quality flags for the product are defined as foldow
Bit 1: O=good, >0 = bad

Bit 2: 0=good Level 1B data, 1=bad Level 1B data
Bit 3: O=clear, 1=cloudy

Bit 4: 0= LZA <=65 degrees, 1 = LZA > 65 degrees
Bit 5: 1=missing data

Product Quality Information
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Byte | Bit | Flag Source | Value
0 0 Satellite zenith angle block-out| L1B 1=zenith angle>65° or
zone lat>66°; 0=0OK
1 Cloud Type Algorithm Input Cloud | 1=bad data;
Type 0=0K
2 Level 1B data L1B 1=bad data;
0=0K
3 Pre-Convective Cloud Object | ClI 1=Cloud Object;
Flag 0=No Cloud Object
4 Cl Yes/No Cl 1=No CI Likely;
0=ClI Likely
5 Not Used
6 Not used
7 Not used
1 0-7 | Number of CI Interest Fields | Cl Number of CI Interest Field
Triggered Triggered within Object
ranging from O to 12

Table 6. Product Quality Information

M etadata

The metadata needed for the CI algorithm is asvidl

Number of Objects Time 1

Number of Objects Time 2

Number of Tracked Objects

Average number of passed spectral tests over gttsh

Average value of each spectral test calculated aVebjects

Average number of pixels within all objects at Tithe

Average number of pixels within all objects at Tithe

Average number of pixels within tracked objects

Table 7. Metadata information.

4 Test Data Setsand Outputs

4.1 Simulated/Proxy Input Data Sets

Proxy datasets used for this study is the SEVIR&skt. Current research is currently
underway using the spectral channels on SEVIRI arghting a robust dataset of
threshold values using those available spectrahrodla. The object tracking has been
tested using RAMS simulated radiances, and alsariently being tested on SEVIRI 5-

minute rapid scan.
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4.2 Output from Proxy Input Data Sets

The output from the proxy data sets will resembie planned output for GOES-R.

However, since SEVIRI data has a horizontal spat¢isblution of 3 km at nadir, the output
from SEVIRI examples will be larger. Also, whetsttics are derived using SEVIRI data,
it is important to note the increase in horizostadtial resolution of SEVIRI may cause some
areas of small-scale convective initiation to besad.

Figure 9. CI Algorithm output examples from 5 néen\MSG SEVIRI data from 08 June 2007. The top two
images are at time 1 (1024 UTC), the middle twogesaare time 2 (1029 UTC). For the top two rows, left
side is the 10.7 micron channel image and the imagethe right are the defined objects. The bottmmon
the right is algorithm output valid at 1029 UTC atie bottom image on the left is the actual IR ieegthe
future at 1124 UTC.

4.2.1 Precision and Accuracy Estimates

The validation complete has shown that the algoriéxceeds the requirement of greater than
70% accuracy. Accuracy is defined as the sumtsfgius correct negatives divided by the sum
of all events. Two different validation datasetsr@/used to examine algorithm performance.

For the first set of cases, was using 216 eveats the MSG SEVIRI instrument from the
summer 2007 from different convective days fromtBetn Germany. The contingency table
from the results is listed in Table 8.

HITS FALSE ALARMS
107 20

MISSES| CORRECT NEGATIVES
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| 16 | 41 |
Table 8. Contingency table from validation usin§®SEVIRI.

The second validation dataset was from a casédaythe RAMS simulated ABI channels
which allows for a test using the high spatial tadporal resolution data. The case day is 28
June 2005 and was a convective day over the femge in eastern Colorado. Table 9 is a
contingency table from the results of this day.

HITS FALSE ALARMS

21 9

MISSES| CORRECT NEGATIVES
I 37

Table 9. Contingency table from validation usifgVMRS simulated datasets.

4.2.2 Error Budget

The F&PS requirement for the convective initiatadgorithm is an accuracy of 70% or greater.
From the two different independent datasets, tiearacy was 80.75% for the MSG dataset and
78.9% for the RAMS simulated dataset. This excéleelsequirement.

5 Practical Considerations

5.1 Numerical Consderations

Since the object tracking requires the use of #eaf the cloud-typing algorithm, it is required

to be processed first. Once that is received,guia current time image and previous image in
time, object tracking can be processed, along withinterest field calculations. The object

tracking code may be slowed down when there isgelaumber of defined objects, but this can
be mitigated by code enhancements such as pazalligle code or other efficiencies such as
subsetting the domain.

5.2 Programming and Procedural Considerations

The CI object tracking as well as the temporal spéanterest fields requires the use of the
current time and the previous image in time. Othan the requirement for the current image
and previous image in time, the CI algorithm isddmect-based algorithm, which provides an
end result of a pixel-by-pixel image.

5.3 Quality Assessment and Diagnostics

The quality flags will contain product quality bygsing in information from the quality flags
from the input data. Also, the metadata and prodpmlity information output will give
assessments to determine how the algorithm is deitig respect to identifying cloud objects
and tracking those objects. This is in additioretsuring that the spectral tests are working
sufficiently.
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5.4 Exception Handling

The quality control flags for CI algorithm will ihecked and inherited from the flagged Level
1b sensor input data, including bad sensor inptat, aaissing sensor input data and validity of
each channel used; and will also be checked aretitetd from the ABI cloud mask at each
pixel.

The CI Algorithm also expects the Level 1b proasgso flag any pixels with missing
geolocation or viewing geometry information.

5.5 Algorithm Validation

The validation of the CI algorithm should be objbased. Since we are concerned with whether
a particular cloud will convectively initiate, oloebased approach to validating the algorithm is
the best approach since it will give accurate stiatl information.

The validation strategy will include a full contewcy-based statistical analysis. Since
validation of this product is a dichotomous foréc2g2 contingency table validation can easily

be performed (Table 7). Not only will probabilif detection (POD) and false alarm ratio

(FAR), but also probability of false detection ffalalarm rate), threat score (critical success
index), Heidke skill score, and bias score. Knanamd publishing all these variables will allow

for a complete validation, which is important foetpurpose of providing a robust algorithm.

Following the objects that have been flagged forveative initiation using the method outlined
in section 3.1.3 easily performs object-based adlh. At each satellite time, each pixel within
an object will be corrected for parallax and sedhghnearest WSR-88D lowest elevation angle.
Within each defined object, the radar image atstmme within the object is searched for the
occurrence of a 35 dBZ anywhere within the defiabgbct.

In order to develop statistics within the 2x2 cogéncy table, we must also examine all areas of
the first occurrence of a 35 dBZ radar echo. Iaesa of 35 dBZ radar reflectivity is found and
no object pixels are found within that area, tH@a tust be documented. We must also explore
areas where Cl was not forecasted and no 35 dBat exho was found in order to fill the 2x2
contingency table. Following this procedure andgrening a 2x2 contingency table will allow
for the statistics to ensure the Cl algorithm isust.

Cl Forecasted? Yes Cl Forecasted? Yes
Cl Occurred? Yes Cl Occurred? No
Cl Forecasted? No Cl Forecasted? No
Cl Occurred? Yes Cl Occurred? No

Table 10. Dichotomous forecast verification 2x2 contingency table.

An issue with validating the algorithm is gainingcass to radar data over Europe. For the
validation study, we were able to gain accessdamrdata over southern Germany during the
summer of 2007. We continue to attempt to gairsEcadar data to ensure algorithm
validation.
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To mitigate some of the issues with gaining actesadar data over Europe, the Cooperative
Institute for Research in the Atmosphere (CIRALatorado State University has performed
several RAMS model simulations over several conveaays and provided ABI simulated
datasets to run the Cl algorithm. Model derivedudated radar reflectivity has been used to
validate the algorithm for the day that was prodid€IRA is providing more case days to
validate.

6 ASSUMPTIONSAND LIMITATIONS

The following sections describe the current limgas and assumptions in the current version of
the CI algorithm.

6.1 Performance

The following assumptions have been made in devsjopnd estimating the performance of the
Cl algorithm. The following list contains the cemt assumptions and proposed mitigation
strategies.

1. We assume that the WSR-88D radar reflectivity valaiee accurate. The WSR-88D
radar available from NCDC is quality controlled ahds the risk is mitigated.

2. For correction of the satellite parallax issue,agsume that the data used for cloud-
top pressure from GOES sounder is accurate. HEsdhen validated in the literature
and for our purpose of radar based validation tha & minimal.

3. Itis assumed that in general, clouds, which aosvgrg vertically over time, are also
growing horizontally. However, in the instance whéhat is not the case, there could
be missed CI events in the event the object sizesrmaall and are moving fast.

6.2 Assumed Sensor Performance

It is assumed that the sensor will meet its curspetifications. However, the algorithms will
be dependent on the following instrumental charasttes.

» Errors in navigation will affect the ability of thhemporal overlap tracking technique to
identify overlap regions.

* 5-minute temporal resolution is required as a mummnfor effective object tracking.

e Sensor accuracy is important since the spectratshimid tests require accurate
measurement especially when using 5-minute datde dhanges within cloud top
temperatures will be on the order of the sensauracy over 5 minutes in most cases.

6.3 Pre-Planned Product I mprovements

Currently examining a methodology used within cott®OES (adapted from Zinner et al. 2008)
to track objects using a motion field. This woaltbw for higher temporal resolution of satellite
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data for the CI algorithm to effectively operat&€his would require the input of the GOES-R
AWG Derived motion vectors within the CI algorithnResearch is on-going within this area
testing the algorithm performance using the AWGdapnoduct.
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