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1 INTRODUCTION 
 

1.1 Purpose of This Document 
The convection initiation theoretical basis document (ATBD) provides a high level 
description of and the physical basis for the assessment of convection initiation derived 
from the Advanced Baseline Imager (ABI) flown on the GOES-R series of NOAA 
geostationary meteorological satellites.  The Convection Initiation (CI) algorithm 
provides an assessment of the clouds that may precipitate.  The CI algorithm is designed 
to monitor the growth of non-precipitating clouds, and once a series of spectral and 
temporal thresholds are met, that cloud is identified as likely to have a radar reflectivity 
greater than 35 dBZ within 0-2 hours. 

1.2 Who Should Use This Document 
The intended user of this document are those interested in understanding the physical 
basis of the convection initiation algorithm and how to use the output of this algorithm to 
determine clouds which may produce radar reflectivities greater than 35 dBZ.  This 
document also provides information useful to anyone maintaining or modifying the 
original algorithm.   

1.3 Inside Each Section 
This document is broken down into the following main sections. 
 

• System Overview: Provides relevant details of the ABI and provides a brief 
description of the product generated by the algorithm. 

 
• Algorithm Description: Provides all the detailed description of the algorithm 

including its physical basis, its input and its output.  Validation will also be 
addressed. 

 
• Assumptions and Limitations: Provides an overview of the current limitations of 

the approach and gives the plan for overcoming these limitations with further 
algorithm development. 

 

1.4 Related Documents 
This document currently does not relate to any other document outside of the 
specifications of the F&PS and to the references given through out. 

1.5  Revision History 
Version 1.0 of this document was created by Wayne M. MacKenzie, Jr., John R. Walker 
and John R. Mecikalski of the University of Alabama in Huntsville and its intent was to 
accompany the delivery of the version 1.0 algorithm to the GOES-R AWG Algorithm 
Integration Team (AIT). 
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2 OBSERVING SYSTEM OVERVIEW 
Overview of the algorithm(s), including the objectives, characteristics of the 
instrument(s)  referencing rather than repeating requirements that provides the input data 
and retrieval strategies.  

2.1 Products Generated 
The convection initiation (CI) algorithm produces a binary field at 2 km spatial resolution 
of areas where CI has a high likelihood of occurring.  The product uses a spectral 
thresholding technique, which tracks clouds within their early stages of development, and 
monitor their spectral characteristics.  If a large majority of the spectral “interest fields” 
thresholds are exceeded, then the pixels within the cloud object are flagged for having a 
high likelihood for CI. 
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detection 

70% 
Probability 
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Detection 

5 min 159 
sec N/A  Day 

and 
night 

Convective 
Initiation  GOES-

R M N/A 2 km 1 km Binary 
Yes/No 
detection  

70% 
Probability 
of Correct 
Detection 

5  min 159 
sec N/A Day 

and 
Night 

Table 1.  CI Algorithm Requirements. 
 
 
2.2 Instrument Characteristics  
The algorithm will use the various spectral channels within GOES-R (listed in Table 1). 
Table 1 summarizes the projected channel.   
 
Channel Number Wavelength (µm) Projected to be used in CI 

processing 
1 0.47  
2 0.64  
3 0.86  
4 1.38  
5 1.61  
6 2.26  
7 3.9  
8 6.15 X 
9 7.0 X 
10 7.4 X 



 

6 
 

11 8.5 X 
12 9.7 X 
13 10.35  
14 11.2 X 
15 12.3 X 
16 13.3 X 

Table 2.  Channel numbers within GOES-R ABI and wavelengths used for the CI algorithm. 

 
The algorithm relies on the infrared channels only for the algorithm to have both day and 
night continuity. The performance of the algorithm may be sensitive to any instrument 
noise.   
 
 
 
 

3 ALGORITHM DESCRIPTION 
This is a complete description of the algorithm at the current level of maturity (which will 
improve with each revision). 
 

3.1 Algorithm Overview 
Mecikalski and Bedka (2006) first showed that one can track growing cumulus, monitor 
their spectral properties, and using a set of threshold-based indicators to determine the 
likelihood that a particular cumulus will precipitate.  The thresholds incorporate spectral 
differences that give information into the cloud-top phase of clouds as well as their 
respective location within the troposphere to determine cloud maturity.  In addition to 
that information, the growth of the cloud through the troposphere over two successive 
images can be achieved using several of the spectral channels as outlined in Table 1.  
Knowledge of this information can provide information into the stage of development of 
a cumulus cloud, and thus identify whether a cloud will precipitate within a hour one time 
period. 

3.2  Processing Outline 
The processing outline of the CI algorithm is summarized in Figure 1.  The current CI 
algorithm uses satellite data in netCDF format for input into Fortran based processing 
code.  The ABI data (current data along with one previous time period) and the cloud-
typing algorithm (current data along with one previous time period) are required to begin 
processing the CI algorithm.  
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Figure 1.  High Level Flowchart of the CI Algorithm illustrating the main processing sections. 

3.3 Algorithm Input 
This section describes the input needed to process the CI algorithm.  Currently, the code 
is developed in Fortran 90.  
 

3.3.1 Primary Imager Data 
 

• In its current stage, the CI algorithm requires the use of the brightness 
temperatures from channels 8-12 and 14-16 within the IR (Table 1), as well as the 
current image and the previous image in order to process all stages of the 
algorithm outlined in figure 1.  

 
 

3.3.2 Ancillary Data 
The use of the ABI AWG Cloud Team Cloud Type Product is needed for the CI 
algorithm.  The current time dataset along with the previous time dataset is 
required for processing.  Any cloud type data dependencies as outlined in the 
Cloud Type ATBD are also inherently necessary for the CI algorithm. 

Load Cloud Type 

and ABI data 

Identify objects, 

and determine 

overlap regions 

Overlap coldest 

pixels and 

perform 

spectral tests 

Output pixels which 

are likely to initiate 

based upon 

achieving a number 

of interest fields. 
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3.4 Theoretical Description 

3.4.1 Physics of the Problem  

The CI algorithm tracks moving clouds using an object identification and tracking 
technique and monitors the growth of the clouds using a spectral thresholding technique 
using the thresholds listed in table 2.  It is important to note that this algorithm is 
designed for identifying clouds, which have the potential for growth, thus mature clouds 
are omitted.  It is important to note that other studies have used similar methods for 
monitoring mature mesoscale convective complexes (Carvalho and Jones 2001, Machado 
and Laurent 2004 and Vila et al. 2008). 

 
Objects are identified using the AWG Cloud Typing algorithm. If clouds are identified as 
water, supercooled or mixed phase, those pixels are deemed immature for the purpose of 
CI identification.  The algorithm searches around each pixel to determine a gap in pixels, 
and this is the method for determining whether a pixel is an independent object or part of 
a larger object.  For the 100% delivery, the algorithm will take the larger objects and 
focus on the convectively active regions of the larger object.  A size threshold will be 
used to determine whether an object is too large and a peak detection technique using the 
11.2 µm channel to pull out the convectively active regions.  This will also help with 
mitigating any false cloud detections by the AWG Cloud Typing algorithm since falsely 
identified large objects will be removed if there are no minimum temperature peaks. 
 
The CI algorithm uses an object tracking technique, which is an overlap method.  This 
overlap technique exploits the high temporal resolution of GOES-R.  Currently, the 
tracking algorithm does not perform well for fast moving clouds and if the temporal 
resolution is greater than 5 minutes. 
 
Once the objects have been identified and tracked, the coldest 25% of the pixels within 
each of the object are averaged using a quick sorting routine in which all the brightness 
temperature pixels are listed, and then organized from coldest to warmest, and the coldest 
25% of the pixels are used to average all spectral channels used within the CI algorithm.   
 
Using the object average brightness temperature from each of the spectral channels used 
in table 1, a series of infrared spectral threshold tests will be performed (as listed in Table 
2).  The objects spectral information difference will occur using the object average 
temperature, and temporal differencing will occur over the previous time object average 
brightness temperature for each spectral channel. 
 
If the object meets 7 of the 12 spectral tests, all pixels within the object will be 
highlighted as a high likelihood of initiation (initiation is defined as the object achieving 
a 35 dBZ radar echo). 
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In the following sections, the four main components of the algorithm will be discussed in 
detail.  The four main components are: 

1) Object Identification 
2) Object Tracking 
3) Spectral Interest Field Tests 
4) Determining whether there is a high likelihood for Convective Initiation. 

 

Interest Field Physical Basis (Mecikalski et 
al.. 2009) 

Critical Value 

6.2-10.8 µm Cloud Depth -30oC to -10oC 

6.2-7.3 µm Cloud Depth -25oC to -5oC 

11.2 µm Cloud Depth/Glaciation -20oC to 5oC 

8.7-10.8 µm Glaciation -10oC to -1oC 

Tri-channel Diff Glaciation -10oC to 0oC 

5 min Tri-Channel Glaciation Trend >0oC 

5 min 12.0-10.8 µm Cloud Depth >0.5oC 

12.0-10.8 µm Cloud Depth -3oC to 0oC 

5 min 10.8 µm Cloud Growth < -1.33oC 

5 min 6.2-7.3 µm Cloud Depth Trend >0oC 

5 min 6.2-10.8 µm Cloud Depth Trend >0.5oC 

13.4-10.8 µm Cloud Depth -20o to -5oC 

Table 3. Current CI indicators currently being tested for use within MSG operations. 

Object Identification  
 
The purpose of this algorithm is to take large objects, such as within a large cloud deck, 
and focus on the convective elements to perform the spectral and temporal tests to 
determine likelihood for convective initiation.  This algorithm begins with a driver 
subroutine that handles the selection of cloud peaks and starts the “blobing” algorithm 
that defines the area of the object and defines a gap that no other object can begin to be 
defined in. The driver function takes in a blank array that is where the objects will be 
defined, the cloud mask, the brightness temperature array, and the maximum number of 
rows and columns. It then turns the 2D brightness temperature array into a 1D array that 
can be sorted and it creates a 1D list of the original indices of the temperature in question. 
Both of these arrays are sorted based on the brightness temperature. The algorithm takes 
the temperatures in order from coldest to warmest and compares the associated indices 
against the cloud mask and the output array to determine if the object is a cloud and if the 
area is not designated as something else already in the output. Finally it verifies that the 
point is actually a peak and then it passes the output array, the row and column in 
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question, a maximum temperature derived from an average of the temperatures within the 
cloud sections, an ID for the object, the cloud mask, the brightness temperature array, and 
the row and column in question again (meaning shown within the “blobing” algorithm.). 
Once the blobing algorithm returns the object ID is incremented and we look at the next 
coldest point.  
 
Within the blobing algorithm it just calls a function that takes in the same arguments as 
the subroutine. Since this algorithm starts in the center then checks surrounding points, 
then the surrounding point's surrounding points in a “blobing” out style, It also compares 
against the cloud mask, then check if the point has already been visited. It then compares 
against how far the algorithm has come from the original point to keep it from spreading 
too far. If all that succeeds, the algorithm determines if the point should be given the 
objects ID number or be allocated as “skirt” based on distance from center. It then does 
the same thing for the points around it passing in the original point as the second point 
passed in that I referenced above. Once it has determined the while area it returns to the 
driver subroutine. 
 

The above description will be included within the 100% delivery. 

 

Object Tracking Methodology 
The object tracking algorithm is based upon the simple concept of temporal overlapping.  
Because of this restriction, there is a weakness in that if the mean flow is fast and the 
object size is small, there may not be temporal overlap between the two times.  This is 
somewhat mitigated from the fact that growing clouds will increase in horizontal size as 
well as vertically which minimizes this impact.  Figure 2 shows the threshold where an 
object may be missed for a given object size and speed.  This assumes the object size 
remains constant between time 1 and time 2.   
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Figure 2.. Threshold for object ground speed for a given object diameter which is parallel to the wind flow. 

 
Temporal overlap is where an object that occupies a space at Time 1 (T1) can be assumed 
to be the same object at Time 2 (T2) as long as its position at T2 coincides or “overlaps” 
with part of the space it occupied at T1 (Fig. 3).   

 
Figure 3  Schematic diagram showing how a single object can be tracked through time via the temporal 
overlapping technique. 

 
 
The first step to applying this method to the tracking of cloud features is to identify all 
desired cloud types resulting from a trustworthy satellite-based cloud classification 
scheme, and then mask out all other irrelevant or undesired cloud types.  In the given 
algorithm, all interesting cloud feature pixels from both T1 and T2 are assigned the 
integer, “-1”.  Next, the resulting arrays are summed, so that all temporally overlapping 
regions can be identified wherever the integer “-2” is present (Fig. 4).  Obviously, non-
overlapping region pixels are left at values of “-1” after the arrays are summed.  Fig. 5 
better demonstrates this overlap region identification with real, scaled down output from 
the computer algorithm, using simplified input case data. 

 

 
Figure 4.  Schematic showing that the summing of object arrays at T1 and T2 result in values of “-2” for 
all overlap region pixels, when all object pixels are initially assigned values of “-1”.  The ellipse on the left 
represents an object at T1, while the ellipse on the right represents the same object at T2. 
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Figure 5.  Illustration of how the overlap regions are identified. Object array pixels from T1 (a) and from 
T2 (b) are summed.  The result is a single array of integers (c) with values of “0” where no objects exist 
(grey), values of “-1” where objects exist but there is no overlap (green or red), and values of “-2” where 
there is overlapping between T1 and T2 (yellow). 
 
 
The next step performed in this algorithm is to assign each individual overlap region a 
unique, positive integer identification number (ID number).  The algorithm loops through 
the summed array, searching for overlap pixels, valued at “-2”.  Then, whenever the first 
group of overlap pixels is encountered, a counter, which is initialized at “0”, is 
incremented up to “1”, and each pixel in that overlap group is assigned an ID number of 
“1”.  The next time a group of overlap pixels is encountered, the counter is incremented 
up by one more integer value, and the process continues until each overlap region is 
assigned a unique integer ID number (Fig. 6). 
 

  
Figure 6.  Continuing the example from Fig. X.3, the overlap regions have all been assigned unique ID 
numbers. 
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Next, the algorithm loops through the ID number overlap array and iteratively “spreads” 
each overlap region’s ID number left, right, up, and down across the entire space 
occupied by each given object through both T1 and T2.  The final product from this step 
is a single collective array where the pixel space occupied by individual objects that 
overlapped their selves from T1 to T2 is accordingly assigned an integer ID number that 
is unique to a given object (Fig. 7).  
 

 
Figure 7.  Illustration showing the result after “spreading” ID numbers from the overlap regions to the 
rest of the space occupied objects both at T1 and at T2. 
 
 
The final step in the object tracking algorithm is to separate the recently created T1/T2 
collective array into its original T1 and T2 components, now that unique integer ID 
numbers have been assigned to each object (Fig. 8).  From there, cloud top characteristic 
trends and interest fields can be derived consistently for whole, individual objects. 
 

 
Figure 8.  Final output from the object tracking algorithm.  Each object has been assigned a unique ID 
number that remains consistent from T1 (a) to T2 (b). 
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Spectral Tests 
In order to perform the spectral tests, all pixels within each object are sorted from coldest 
to warmest using the 11.2 µm spectral channel.  Then the 25% coldest pixels are 
averaged to come away with an average brightness temperature for the particular channel.  
Using the same pixels used to perform the averaging for the 11.2 µm channel, the average 
brightness temperature is found for each of the other spectral channels as defined in Table 
1. 

For each object, the spectral tests defined in Table 2 are performed (including temporal 
tests using the previous image).  If the resultant value from each test is within the critical 
value, then that test receives a 1, and all tests, which the critical value was not achieved, 
then a value of 0 is recorded. 

 

Determination of Likelihood for CI 
The spectral tests performed above are summed, and empirical results have shown that if 
7 or greater of the tests have triggered, then there is a high likelihood for convective 
initiation.  The object is then flagged for CI in a separate array, which contains the 
summed values of each of the spectral tests binary results.  For example, if 5 of the 
spectral tests were within the critical value, then the resultant summed value of the binary 
spectral test is 5, which is less than the 7 or greater required to be likely for CI. 

 

 

3.4.2  Physical/Mathematical Description 
 

Interest Field Development 
Meciklaksi and Bedka (2006) outlined several spectral threshold interest fields, which are 
used within the current GOES satellite (table 3).  This interest fields provide information 
into the growth characteristics of the cloud.  Knowing this information will provide lower 
false alarms because knowing the vertical location of the cloud within the atmosphere 
will remove the erroneous cooling rates from the 11 micron channel.  Studies have shown 
that the spectral channels within the current GOES satellite provide such information and 
allows for effective monitoring of growing cumulus clouds.  Having more spectral 
information within GOES-R will facilitate the use of more cloud property information, 
which will further reduce false alarms. 
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CI interest field Critical value 
  10.7µm T (one score) °C 

10.7 µm T time trend (two scores) < -4 °C (15 min)-1, ∆T (30 min)-1 <∆T (15 min)-1  

Timing of 10.7 µm T drop below 0 °C (one score) Within prior 30 min 

6.5-10.7 µm difference (one score) -35 °C to -10 °C 

13.3-10.7 µm difference (one score) -25 °C to -5 °C 

12.0-10.7 µm difference (GOES-11) -3 °C to 0°C 

6.5-10.7 µm time trend (one score) > 3°C (15 min)-1 

13.3-10.7 µm time trend (one score) > 3°C (15 min)-1 

12.0-10.7 µm time trend (GOES-11) > 2°C (15 min)-1 

  Table 4. Current Operational GOES infrared interest fields used within the current CI algorithm. 

The 6.7-10.7 micron spectral difference provides information on cloud top height 
location relative to the tropopause (Mecikalski and Bedka 2006).  Typically the 
difference is negative because the surface temperature is warmer than the upper-
troposphere where the water vapor channel weighting function peaks.  A positive 
difference corresponds to clouds at or above the tropopause (Ackerman 1996; Schmetz et 
al. 1997).  This information can identify clouds which are immature or which are growing 
into the midlevel of the atmosphere.  The temporal trend of this interest field allows for 
the growth of the cloud with respect to the tropopause to be monitored over time.  
Essentially, this field allows for the determination of how fast the cloud is moving 
through the troposphere.  This has implications of ensuring that the 10.7 micron temporal 
cooling rate is accurate and minimize large cooling rates originating from clouds growing 
rapidly within the boundary layer below the capping inversion.  This situation will not be 
shown within the 6.7 micron spectral channel because the weighting functions peak 
higher in the tropopause. 

The 12.0-10.7 micron spectral difference, known as the “split window” technique, is 
typically used for identifying the presence of cirrus, volcanic ash, and deep convective 
clouds.  Inoue (1987) has found that near-zero 12.0-10.7 micron spectral differences 
provide a means to identify areas convective rainfall.  This is an enhancement to the 
Griffith et al (1978) method which uses a <-20oC 10.7 micron brightness temperature.  
The purpose for this interest field is to highlight areas, which are evolving into a 
convection rainfall cloud.  The temporal trend of the spectral channel allows a more 
effective approach to monitoring this transition. 

The 13.3-10.7 micron spectral difference does provide information for growing cumulus 
clouds since Mecikalski and Bedka (2006) found that this spectral difference has different 
characteristics from mature cumulus to pre-ci cumulus, similar to the 6.5-10.7 micron 
spectral difference.  Mecikalski et al. (2008) found using a principal component analysis 
found that the 13.3-10.7 micron channel is one of the most important interest fields.  It is 
hypothesized that this spectral difference was found to be important because of the 8 km 
spatial resolution of the 13.3 micron channel on the current GOES.  If the 13.3 micron 
channel saturates, then it is very likely that the storm would initiate because of the poor 
spatial resolution.  Since the 13.3 micron channel will have a spatial resolution of 2 km 
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on GOES-R, it is uncertain how important this channel will be due to the relatively few 
studies performed on this spectral channel. 

Mecikalski et al. (2010) contains a detailed explanation of the best uses for the infrared 
fields for pre-convective clouds.  Further, Siewert et al. (2009) discusses how to use 
Meteosat Second Generation (MSG SEVIRI) data for convective initiation purposes over 
South Africa using a different tracking methodoloy.  However, Siewert et al. (2009) does 
demonstrate the importance of using multiple spectral tests within a convective initiation 
algorithm.  Mecikalski et al. (2010) examined all the possible spectral tests and divided 
them into three physical categories: 1) cloud depth, 2) cloud top glaciation and 3) updraft 
strength.  From these three physical categories, tests were performed to determine which 
spectral tests are redundant and which ones contain the most information.  Thus, the 
result from the study was to determine the average value from all of the pre-convective 
events and also examine which particular spectral tests are important.  For the GOES-R 
CI algorithm, this study supplied the spectral interest fields (or spectral tests) to be used.  
The main components of using the additional spectral channels on MSG are to exploit the 
three categories.  The results from this study was taken from the average value and taking 
a standard deviation from the average to develop the critical values.  Some changes were 
required to account for the change from 15-minute temporal resolution to 5-minute 
temporal resolution since the original study was performed using 15-minute data. 

The Mecikalski and Bedka (2006) algorithm is currently in operation using the spectral 
channels on the current GOES series.  The current algorithm has a high probability of 
detection (upwards of 90% when all interest field thresholds are met) but high False 
Alarm Rate (Mecikalski et al. 2008).  The high false alarm rate is caused from a pixel 
based tracking and verification and an object based verification will give more accurate 
probability of detection and false alarm rate, as we have found from our current 
validation.  GOES-R will allow for the addition of other spectral interest fields in order to 
constrain false alarm rates. 

Determination of Likelihood for CI 
Empirical results have shown that 7 or greater of the 12 spectral tests give the optimal 
statistics.  Using 213 cases over Europe during the summer of 2007, tests were performed 
ranging over all sums of spectral tests.  Table 4 contains the accuracy for each of the 
summation of spectral tests.  Accuracy is defined as the sum of hits plus correct negatives 
divided by the total of all four values within the validation contingency table.  Notice that 
7 or greater spectral tests is where the accuracy is maximized. 
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# of spectral 
tests triggered 

Accuracy 

1 or greater 57.7% 

2 or greater 60.56% 

3 or greater 61.97% 

4 or greater 67.6% 

5 or greater 69.95% 

6 or greater 76.06% 

7 or greater 80.75% 

8 or greater 73.24% 

9 or greater 53.05% 

10 or greater 48.83% 

11 or greater 43.2% 

12 or greater 42.25% 

Table 5. Comparison of the number of spectral tests triggered to impact on the accuracy. 

3.4.3 Algorithm Output 
The final output of this algorithm is a binary field of whether a particular object will be 
likely to initiate (achieving a 35 dBZ radar reflectivity).  All pixels within the object will 
be highlighted with a 2 km pixel resolution.  Quality flags, product quality information 
and metadata are also included as output. 
 
Quality Flags 
 
Quality flags for the product are defined as follows: 
Bit 1:  0=good, >0 = bad 
Bit 2:  0=good Level 1B data, 1=bad Level 1B data 
Bit 3:  0=clear, 1=cloudy 
Bit 4:  0= LZA <=65 degrees, 1 = LZA > 65 degrees 
Bit 5:  1=missing data 
 
Product Quality Information 
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Byte Bit Flag Source Value 
0 0 Satellite zenith angle block-out 

zone 
L1B 1=zenith angle>65° or 

lat>66°; 0=OK 
 1 Cloud Type Algorithm Input Cloud 

Type 
1=bad data; 
0=OK 

 2 Level 1B data L1B 1=bad data; 
0=OK 

 3 Pre-Convective Cloud Object 
Flag 

CI 1=Cloud Object; 
0=No Cloud Object 

 4 CI Yes/No CI 1=No CI Likely; 
0=CI Likely 

 5 Not Used   
 6 Not used   
 7 Not used   
1 0-7 Number of CI Interest Fields 

Triggered 
CI Number of CI Interest Field 

Triggered within Object 
ranging from 0 to 12 

Table 6.  Product Quality Information 
 
 
Metadata 
 
The metadata needed for the CI algorithm is as follows: 
Number of Objects Time 1 
Number of Objects Time 2 
Number of Tracked Objects 
Average number of passed spectral tests over all objects 
Average value of each spectral test calculated over all objects 
Average number of pixels within all objects at Time 1 
Average number of pixels within all objects at Time 2 
Average number of pixels within tracked objects 
Table 7.  Metadata information. 
 

 
 

4 Test Data Sets and Outputs 

4.1 Simulated/Proxy Input Data Sets 
Proxy datasets used for this study is the SEVIRI dataset.  Current research is currently 
underway using the spectral channels on SEVIRI and creating a robust dataset of 
threshold values using those available spectral channels.  The object tracking has been 
tested using RAMS simulated radiances, and also is currently being tested on SEVIRI 5-
minute rapid scan. 
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4.2 Output from Proxy Input Data Sets  
The output from the proxy data sets will resemble the planned output for GOES-R.  
However, since SEVIRI data has a horizontal spatial resolution of 3 km at nadir, the output 
from SEVIRI examples will be larger.  Also, when statistics are derived using SEVIRI data, 
it is important to note the increase in horizontal spatial resolution of SEVIRI may cause some 
areas of small-scale convective initiation to be missed. 

  

 
Figure 9.  CI Algorithm output examples from 5 minute MSG SEVIRI data from 08 June 2007.  The top two 
images are at time 1 (1024 UTC), the middle two images are time 2 (1029 UTC).  For the top two rows, the left 
side is the 10.7 micron channel image and the images on the right are the defined objects.  The bottom row on 
the right is algorithm output valid at 1029 UTC and the bottom image on the left is the actual IR image in the 
future at 1124 UTC. 

 

4.2.1 Precision and Accuracy Estimates 
The validation complete has shown that the algorithm exceeds the requirement of greater than 
70% accuracy.  Accuracy is defined as the sum of hits plus correct negatives divided by the sum 
of all events.  Two different validation datasets were used to examine algorithm performance. 

For the first set of cases, was using 216 events from the MSG SEVIRI instrument from the 
summer 2007 from different convective days from southern Germany.  The contingency table 
from the results is listed in Table 8. 

HITS 
107 

FALSE ALARMS 
20 

MISSES CORRECT NEGATIVES 
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16 41 
Table 8.  Contingency table from validation using MSG SEVIRI. 

 The second validation dataset was from a case day from the RAMS simulated ABI channels 
which allows for a test using the high spatial and temporal resolution data.  The case day is 28 
June 2005 and was a convective day over the front range in eastern Colorado.  Table 9 is a 
contingency table from the results of this day. 

HITS 
21 

FALSE ALARMS 
9 

MISSES 
7 

CORRECT NEGATIVES 
37 

Table 9.  Contingency table from validation using RAMS simulated datasets. 

 

 

4.2.2 Error Budget 
The F&PS requirement for the convective initiation algorithm is an accuracy of 70% or greater.  
From the two different independent datasets, the accuracy was 80.75% for the MSG dataset and 
78.9% for the RAMS simulated dataset.  This exceeds the requirement. 

 

5 Practical Considerations 

5.1 Numerical Considerations 
Since the object tracking requires the use of the use of the cloud-typing algorithm, it is required 
to be processed first.  Once that is received, using the current time image and previous image in 
time, object tracking can be processed, along with the interest field calculations.  The object 
tracking code may be slowed down when there is a large number of defined objects, but this can 
be mitigated by code enhancements such as parallelize the code or other efficiencies such as 
subsetting the domain.  
 

5.2 Programming and Procedural Considerations 
The CI object tracking as well as the temporal spectral interest fields requires the use of the 
current time and the previous image in time.  Other than the requirement for the current image 
and previous image in time, the CI algorithm is an object-based algorithm, which provides an 
end result of a pixel-by-pixel image. 

5.3 Quality Assessment and Diagnostics 
The quality flags will contain product quality by passing in information from the quality flags 
from the input data.  Also, the metadata and product quality information output will give 
assessments to determine how the algorithm is doing with respect to identifying cloud objects 
and tracking those objects.  This is in addition to ensuring that the spectral tests are working 
sufficiently. 
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5.4 Exception Handling 
The quality control flags for CI algorithm will be checked and inherited from the flagged Level 
1b sensor input data, including bad sensor input data, missing sensor input data and validity of 
each channel used; and will also be checked and inherited from the ABI cloud mask at each 
pixel. 
 
The CI Algorithm also expects the Level 1b processing to flag any pixels with missing 
geolocation or viewing geometry information. 

5.5 Algorithm Validation 
The validation of the CI algorithm should be object-based.  Since we are concerned with whether 
a particular cloud will convectively initiate, object-based approach to validating the algorithm is 
the best approach since it will give accurate statistical information. 

The validation strategy will include a full contingency-based statistical analysis.  Since 
validation of this product is a dichotomous forecast, 2x2 contingency table validation can easily 
be performed (Table 7).  Not only will probability of detection (POD) and false alarm ratio 
(FAR), but also probability of false detection (false alarm rate), threat score (critical success 
index), Heidke skill score, and bias score.  Knowing and publishing all these variables will allow 
for a complete validation, which is important for the purpose of providing a robust algorithm. 

Following the objects that have been flagged for convective initiation using the method outlined 
in section 3.1.3 easily performs object-based validation. At each satellite time, each pixel within 
an object will be corrected for parallax and search the nearest WSR-88D lowest elevation angle.  
Within each defined object, the radar image at the same within the object is searched for the 
occurrence of a 35 dBZ anywhere within the defined object. 

In order to develop statistics within the 2x2 contingency table, we must also examine all areas of 
the first occurrence of a 35 dBZ radar echo.  If an area of 35 dBZ radar reflectivity is found and 
no object pixels are found within that area, then this must be documented.  We must also explore 
areas where CI was not forecasted and no 35 dBZ radar echo was found in order to fill the 2x2 
contingency table.  Following this procedure and performing a 2x2 contingency table will allow 
for the statistics to ensure the CI algorithm is robust. 

 

CI Forecasted?  Yes 

CI Occurred? Yes 

CI Forecasted? Yes 

CI Occurred? No 

CI Forecasted? No 

CI Occurred? Yes 

CI Forecasted? No 

CI Occurred? No 

Table 10. Dichotomous forecast verification 2x2 contingency table. 

An issue with validating the algorithm is gaining access to radar data over Europe.  For the 
validation study, we were able to gain access to radar data over southern Germany during the 
summer of 2007.  We continue to attempt to gain access radar data to ensure algorithm 
validation. 
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To mitigate some of the issues with gaining access to radar data over Europe, the Cooperative 
Institute for Research in the Atmosphere (CIRA) at Colorado State University has performed 
several RAMS model simulations over several convective days and provided ABI simulated 
datasets to run the CI algorithm.  Model derived simulated radar reflectivity has been used to 
validate the algorithm for the day that was provided.  CIRA is providing more case days to 
validate. 

 

6 ASSUMPTIONS AND LIMITATIONS 
The following sections describe the current limitations and assumptions in the current version of 
the CI algorithm. 
 
 

6.1 Performance 
 
The following assumptions have been made in developing and estimating the performance of the 
CI algorithm.  The following list contains the current assumptions and proposed mitigation 
strategies. 
 

1. We assume that the WSR-88D radar reflectivity values are accurate.  The WSR-88D 
radar available from NCDC is quality controlled and thus the risk is mitigated. 

2. For correction of the satellite parallax issue, we assume that the data used for cloud-
top pressure from GOES sounder is accurate.  This has been validated in the literature 
and for our purpose of radar based validation the error is minimal. 

3. It is assumed that in general, clouds, which are growing vertically over time, are also 
growing horizontally.  However, in the instance where that is not the case, there could 
be missed CI events in the event the object sizes are small and are moving fast. 

 

6.2 Assumed Sensor Performance 
It is assumed that the sensor will meet its current specifications.   However, the algorithms will 
be dependent on the following instrumental characteristics. 
   

• Errors in navigation will affect the ability of the temporal overlap tracking technique to 
identify overlap regions. 

• 5-minute temporal resolution is required as a minimum for effective object tracking. 
• Sensor accuracy is important since the spectral threshold tests require accurate 

measurement especially when using 5-minute data.  The changes within cloud top 
temperatures will be on the order of the sensor accuracy over 5 minutes in most cases. 

 

6.3 Pre-Planned Product Improvements 
Currently examining a methodology used within current GOES (adapted from Zinner et al. 2008) 
to track objects using a motion field.  This would allow for higher temporal resolution of satellite 
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data for the CI algorithm to effectively operate.  This would require the input of the GOES-R 
AWG Derived motion vectors within the CI algorithm.  Research is on-going within this area 
testing the algorithm performance using the AWG wind product. 
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