GOES-R SERIES PRODUCT DEFINITION AND USERS’ GUIDE

(PUG)

VOLUME 1: MAIN
VOLUME 2: L0 PRODUCTS
VOLUME 3: LEVEL 1B PRODUCTS
VOLUME 4: GOES-R REBROADCAST (GRB)
VOLUME 5: LEVEL 2+ PRODUCTS
APPENDIX X: ISO SERIES METADATA

August 8, 2019

REVISION 2.1

U.S. Department of Commerce (DOC)
National Oceanic and Atmospheric Administration (NOAA)
NOAA Satellite and Information Service (NESDIS)
National Aeronautics and Space Administration (NASA)

Check the VSDE at https://goeswc.ndc.nasa.gov/goes-wc to verify correct version prior to use.
GOES-R SERIES PRODUCT DEFINITION AND USERS’ GUIDE
(PUG)

VOLUME 1: MAIN
VOLUME 2: L0 PRODUCTS
VOLUME 3: LEVEL 1B PRODUCTS
VOLUME 4: GOES-R REBROADCAST (GRB)
VOLUME 5: LEVEL 2+ PRODUCTS
APPENDIX X: ISO SERIES METADATA

Signature on File ______________________ 11/20/2017
Jim Valenti
NOAA
GOES-R Ground Segment Project Manager

Check the VSDE at https://goeswc.ndc.nasa.gov/goes-wc to verify correct version prior to use.
CHANGE RECORD

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>CCR #</th>
<th>DATE</th>
<th>PAGES AFFECTED</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1.0</td>
<td>CCR-03240</td>
<td>03/02/2017</td>
<td>All</td>
<td>CDRL SE-16 under Government Control. Harris DCN 7035538 PUG APX Rev E has been placed under Gov. GS control as GOES-R Series 416-R-PUG-APX-0350 Rev 1.0.</td>
</tr>
<tr>
<td>Rev. 1.1</td>
<td>CCR-03332</td>
<td>10/27/2017</td>
<td>All</td>
<td>CDRL SE-16 under Government Control. Harris DCN 7035538 PUG APX Rev F has been placed under Gov. GS control as GOES-R Series 416-R-PUG-APX-0350 Rev 1.1.</td>
</tr>
<tr>
<td>Rev. 2.0</td>
<td>CCR-03461</td>
<td>11/01/2018</td>
<td>All</td>
<td>CDRL SE-16 under Government Control. Harris DCN 7035538 PUG APX Rev G has been placed under Gov. GS control as GOES-R Series 416-R-PUG-APX-0350 Rev 2.0</td>
</tr>
<tr>
<td>Rev. 2.1</td>
<td>CCR-03511</td>
<td>08/08/2019</td>
<td>All</td>
<td>CDRL SE-16 under Government Control. Harris DCN 7035538 PUG APX Rev G.1 and G.2 have been placed under Gov. GS control as GOES-R Series 416-R-PUG-APX-0350 Rev 2.1. (Includes SW Baselines DO.07.01 and DO.07.02.)</td>
</tr>
</tbody>
</table>

The document version number identifies whether the document is a working copy, final, revision, or update, defined as follows:

- **Working copy or Draft**: a document not yet finalized or ready for distribution; sometimes called a draft. Use 0.1A, 0.1B, etc. for unpublished documents.
- **Final**: the first definitive edition of the document. The final is always identified as Version 1.0.
- **Revision**: an edition with minor changes from the previous edition, defined as changes affecting less than one-third of the pages in the document. The version numbers for revisions 1.1 through 1.9, 2.1 through 2.9, and so forth. After nine revisions, any other changes to the document are considered an update. A revision in draft, i.e. before being re-baselined, should be numbered as 1.1A, 1.1B, etc.
- **Update**: an edition with major changes from the previous edition, defined as changes affecting more than one-third of the pages in the document. The version number for an update is always a whole number (Version 2.0, 3.0, 4.0, etc).

Check the VSDE at https://goeswc.ndc.nasa.gov/goes-wc to verify correct version prior to use.
PRODUCT DEFINITION AND USER’S GUIDE (PUG)

APPENDIX X: ISO SERIES METADATA

FOR
GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITE R SERIES (GOES-R) CORE GROUND SEGMENT

CONTRACT NO: DG133E-09-CN-0094
DOCUMENT CONTROL NUMBER: 7035538
CDRL SE-16
REVISION G.2
08 MARCH 2019

PREPARED FOR
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NOAA LIAISON OFFICE/NASA GSFC
GOES-R SERIES CODE 417
BLDG. 6, RM. C100
GREENBELT, MD 20771

PREPARED BY:
HARRIS CORPORATION
P.O. BOX 9800
MELBOURNE, FLORIDA 32902-9800
CAGE NUMBER: 91417

NON-EXPORT CONTROLLED

THESE ITEM(S) / DATA HAVE BEEN REVIEWED IN ACCORDANCE WITH THE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS (ITAR), 22 CFR PART 120.11, AND THE EXPORT ADMINISTRATION REGULATIONS (EAR), 15 CFR 734(3)(b)(3), AND MAY BE RELEASED WITHOUT EXPORT RESTRICTIONS.
PRODUCT DEFINITION AND USER’S GUIDE (PUG)

APPENDIX X: ISO SERIES METADATA

FOR

GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITE R SERIES (GOES-R) CORE GROUND SEGMENT

Prepared By: ______________________________
Michael Carломusto
GOES-R SEIT Systems Engineering

Reviewed By: ______________________________ __________________________________
Bob Esposito Ted Peters
GOES-R Security Manager GOES-R Mission Assurance Manager

__ __________________________________
Jeannie Recob Anita Hudson
GOES-R Configuration Manager GOES-R Chief Software Engineer

__ __________________________________
Brad Brown-Bergtold Mike Blanton
GOES-R Chief Systems Engineer GOES-R Mission Readiness IPT Lead

__
Debbie Robeson
GOES-R Project Manager

Approved By: ______________________________
Kevin Hurd
GOES-R Enterprise Ground Solutions Business Area Lead
RECORD OF CHANGE

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| C | 06 December 2013 | Post-CDR Interim Release
1) Co-locate all ISO series metadata into a single document to improve usability of the PUG |
| C.1 | 05 December 2014 | Post-CDR Interim Release
Vol 1, Main:
• Added FITS format section (SUVI)
Vol 2, L0:
• Minor editorial changes
Vol 3, L1b:
• Revised Space Weather and Solar instrument sections
• Co-located Instrument Calibration Data with instrument section
Vol 4, GRB:
• Revised Space Weather and Solar instrument sections
• Corrected APID list
Vol 5, L2+:
• Combined Volumes 5A and 5B
• Added section for Latitude/Longitude grid (Radiation products)
• Added Appendix for dynamic source data
• Miscellaneous changes to CMI product
Appendix X, ISO Series Metadata:
• Revised L1b, L2+, Instrument Calibration Data sections
PTR-12388
UMB_Delivery_SE-16_Product Definition and User’s Guide (PUG) Release Update Rev C.1
• Incorporates PTR-7028, PTR-7556, PTR-7557, PTR-7553, PTR-8055, PTR-8742, PTR-9027, PTR-9518, PTR-11701
• Combined Vol 5A and Vol 5B into a single volume
• Rearranged major sections of the document (consolidated File Naming conventions, consolidated APID lists, etc.), for usability
PTR-7028 |
REVISION DATE DESCRIPTION

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| | | Update Cumulative ERB/PCRB Changes in Next Rev of Document
 - ERB: delete the Rainfall Rate Coefficient Algorithm
 - PCRB: change GLM Lightning Event Peak L1b/GRB update
 - PCRB: change Radiation Grid from ABI Grid to Latitude/Longitude |
| PTR-7556 | | Deferred Comments from Rev. B.2 Peer Review
 - Incorporate comments deferred from Revision B.2 Peer Review |
| PTR-7753 | | SE-16: Updates to PUG Rev C for next Release
 - Fixed MAG L1b OMAS/GRB/PD periodicity |
| PTR-8055 | | SE-16 PUG BCR # 127 + BCR #129 + BCR 124 + BCN_120
 ATP for NcML/Product Definition for non-ABI Sensors +
 BCN_149, BCR 115 Update GLM L2 NcML + BCR 119 + BCR
 #127 and 129 (IPS and Product Set 1 NcML Corrections)
 - BCR#127: incorporated IPS Product NcML corrections
 - BCR#129: incorporated IPS and Product Set 1 NcML corrections
 - BCR#124: changed SUVI, SEISS, MAG NcML
 - BCN_120: NcML/product definition for non-ABI instruments
 - BCN_149 / BCR#115: updated GLM L2+ NcML definition
 - BCR#119: changed SUVI GLM INR report design
 - ECP-9a: added aggregation criteria for Geomagnetic Field,
 Solar Flux: X-Ray products
 - BCR#212: incorporated Product Set 2 NcML corrections |
| PTR-8742 | | SE-16 PUG - Scheduled Science Instrument Products definitions
 - Updated SUVI, EXIS, SEISS, MAG, GLM product definitions |
| PTR-9027 | | SE-16 PUG - Evaluate Customer Comments Against Rev B.2
 - Incorporated customer comments not previously addressed in
 PUG Rev C |
| PTR-9518 | | SE-16 PUG, Evaluate Customer Comments from Rev C
 - Incorporated customer comments against PUG Rev C |
| PTR-11701 | | SE-16 PUG - Update for BCR # 227, Non-ABI product
 Corrections |
<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
• Incorporated non-ABI Product NcML corrections
PTR-13600
• SE-16 PUG - Miscellaneous Corrections
Appendix X
• New content – L0 and GRB Info ISO Series Metadata
Vol 2, L0
• Restructured to be consistent with other volumes
Vol 3, L1b
• New content – dynamic and semi-static processing parameters
Vol 4, GRB
• New content – GRB Information
Vol 5, L2+
• New content – dynamic and semi-static processing parameters |
| D.1 | 11 August 2015 | PTR-14093
• Change 132.8 Angstroms wavelength to 131.2 Angstroms in SUVI documentation
PTR-14107
• Update various L2 product lineage issues
PTR-13638
• Update document for ECP-023 new CONUS center points
PTR-14388
• WR 757: SE-16: CMI – Update PUG to change scaling of band 7 to a max brightness temp of 400K |
| D.2 | 24 March 2016 | PUG release aligned with PC DO.03.00.00 software baseline.
PTR-14663
• SE-16 PUG, Evaluate Customer Comments from Rev D
PTR-15294
• SE-16 PUG, Add GRB-INFO-STATIC description
PTR-15324 |
<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>15 June 2016</td>
<td>PUG release aligned with PC DO.04.00.00 software baseline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTR-16585 SE-16 PUG - Miscellaneous Corrections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTR-16442 WR 1949: GLM appears to have Timing Artifacts (PUG Update)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTR-15605 WR 813: Space Weather products' enhancements requested by NCEI (SE-16 PUG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTR-15605 WR 813: Add SEISS MPS-LO energy bounds/levels to differential_flux_energy_band_label variable value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTR-15580 WR 1697: SE-16 PUG - Rainfall Rate Product DQF Valid Range is Incorrect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTR-15194 WR 1177: SE-16 Modify Product Definition User's Guide for expanded ABI L1b Radiance Limits</td>
</tr>
<tr>
<td>E.1</td>
<td>4 November 2016</td>
<td>PUG release aligned with PC DO.04.02.00 software baseline, except where otherwise noted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-15878 DO.05.00.00 WR 1552: SE-16 PUG - ABI L1b Instrument Calibration Data - Number of detector rows discrepancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-16363 WR 2261: SE-16 PUG - Provide documentation for CAL INR data file structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-16387 DO.05.00.00 WR 2218: SE-16 PUG - There are no ABI CCR results in the PM Generated ABI INR Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-16397 DO.05.00.00 WR 1937: SE-16 PUG - GLM L2+ product metadata errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-16639 DO.05.00.00 WR 1698: SE-16 PUG - Sea Surface Temperature Fill Value incorrect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-16911 DO.05.00.00</td>
</tr>
<tr>
<td>REVISION</td>
<td>DATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 2961: SE-16 PUG - Update to clarify Rainfall Rate metadata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-16936</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 2566: SE-16 PUG - Add Derived Motion Winds PQI and Diagnostic Intermediate Products to the PUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 2749: SE-16 PUG - Update to reflect 2 minute EXIS L0 LZSS file aggregation time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17088</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 2874: SE-16 PUG - Correct File Names of Instrument Calibration Files Produced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 1739: SE-16 PUG - SUVI Instrument Calibration File Names</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 2962: SE-16 PUG - CMI Coefficients update-ADR 143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3058: SE-16 PUG - SUVI scale factors in products do not match scale factors in the PUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17661</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3274: SE-16 PUG - Update to Align with XTCE Database v6.3.005A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17818 DO.06.00.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 2260: SE-16 PUG - Derived Motion Winds (DMW) Wind Direction: Incorrect Direction</td>
</tr>
<tr>
<td>E.2</td>
<td>30 March 2017</td>
<td>PUG release aligned with GOES-R Ground Segment Product Capabilities (PG, PD, PM) software baselines, as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DO.04.04.00: April 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DO.05.00.00: July 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DO.06.00.00: September 2017 (TBR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17880 DO.05.00.00 Vol 5, Table 5.1.6.4-1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3383: SE-16 PUG - Changes for Expansion of CMI range to match DO.04 Rad-ADR 154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-17887 DO.04.04.00 Vol 3, Section 5.0.1; Vol 4, Section 7.0.1; Vol 5, Section 5.0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3483: SE-16 PUG - add explanation/instructions for converting 'seconds since epoch' to standard date/time</td>
</tr>
<tr>
<td>REVISION</td>
<td>DATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>PTRDOC-17995</td>
<td>DO.06.00.00</td>
<td>Vol 3, Table 5.3.2.5.1-11; Vol 4, Table 7.4.2.5.1-11.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3438: SE-16 PUG - Fix Incorrect Flag Definition in EXIS Files - ADR 159</td>
</tr>
<tr>
<td>PTRDOC-18023</td>
<td>DO.06.00.00</td>
<td>Vol 5, Table 4.3.7-2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 2291: SE-16 PUG - GRIP is not showing full SRB image on GOES WEST</td>
</tr>
<tr>
<td>PTRDOC-18057</td>
<td>DO.05.00.00</td>
<td>Vol 3, Sections D.7, D.8 and D.9.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3554: SE-16 PUG - Provide documentation for [CAL] INR data file structures (ABI, GLM, SUVI)</td>
</tr>
<tr>
<td>PTRDOC-18090</td>
<td>DO.06.00.00</td>
<td>Vol 3, Section 5.1.4.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3433: SE-16 PUG - Include pixels with under-saturated sample contributors in ABI Sample Outlier files</td>
</tr>
<tr>
<td>PTRDOC-18144</td>
<td>DO.06.00.00</td>
<td>Vol 5, Table 5.1.7.6-2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3076: SE-16 PUG: DMW Output File is not CF Compliant - ADR 139 (PUG Changes)</td>
</tr>
<tr>
<td>PTRDOC-18158</td>
<td>DO.06.00.00</td>
<td>Vol 3, Table 5.3.1.5-2; Vol 4, Table 7.4.1.5.2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3078: SE-16 PUG: EXIS - Add total number of valid SPS measurements used - ADR 148</td>
</tr>
<tr>
<td>PTRDOC-18191</td>
<td>DO.05.00.00</td>
<td>Vol 3, Table 5.3.1.5-2; Vol 4, Tables 7.4.1.5.1 and 7.4.1.5.2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3568: SE-16 PUG: Revise EXIS EUVS-C Cadence - ADR 183 (PUG Updates)</td>
</tr>
<tr>
<td>PTRDOC-18225</td>
<td>DO.05.00.00</td>
<td>Vol 3, Sections D.4 and D.5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3324, 2989: SE-16 PUG - Update Documentation for MAG, SEISS CAL INR data file structures</td>
</tr>
<tr>
<td>PTRDOC-18228</td>
<td>DO.06.00.00</td>
<td>Vol 3, Table 5.3.2.5-2; Vol 4, Table 7.4.2.5.2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3571: SE-16 PUG: Add SUVI roll angle to EXIS XRS - ADR 147 (PUG Changes)</td>
</tr>
<tr>
<td>PTRDOC-18259</td>
<td>DO.06.00.00</td>
<td>Vol 5, Table 5.21.6-2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3222: SE-16 PUG - Land L2: FSC Metadata Issues - ADR 167</td>
</tr>
<tr>
<td>PTRDOC-18406</td>
<td>DO.06.00.00</td>
<td>Vol 3, Table 5.5.1.5-2; Vol 4, Tables 7.6.1.5.1 and 7.6.1.5.2.</td>
</tr>
<tr>
<td>REVISION</td>
<td>DATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3429: SE-16 PUG - MAG Add IB and OB measurements in 4 coord frames-ADR 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-18441 DO.04.04.00 Vol 3, Table 5.1.3.6.3-2; Vol 4, Table 7.1.3.6.1.1-2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3804: SE-16 PUG: Bad Radiance-to-Brightness-Temp Conversion Coeffs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-18608 DO.04.04.00 Vol 5, Table A.2-1, Section E.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 1264: SE-16 PUG: Change DMW Intermediate Product Filename (Data Short Name)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-18646 DO.05.00.00 Vol 3, Tables 5.3.1.5-2, 5.4.4.5-1, 5.4.4.5-2, 5.4.6.2-1; Vol 4, Tables 7.4.1.5.1, 7.4.1.5.2, 7.5.4.5.1, 7.5.4.5.1.2-4 and 7.5.4.5.2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3918: SE-16 PUG: Removing Hyphens in EXIS and SEIS Vars and Attrs-ADR 207</td>
</tr>
<tr>
<td>F</td>
<td>16 June 2017</td>
<td>PTRDOC-18154 DO.06.00.00 Vol 3, section 5.0.2; Vol 4, section 5.0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3725: SE-16 PUG - Add description of unsigned integer processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-18519 DO.06.00.00 Vol 3, Table 5.3.1.5-2, Table 5.4.4.5-2; Vol 5, Table 5.10.6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3897: SE-16 PUG: Variable missing from XRS and SGPS files- ADR 211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-18813 DO.06.00.00 Vol 3, Table 5.2.1.5.1-2, section 5.2.1.5.2, Table 5.2.1.5.4-5, Table 5.3.1.5-2, Table 5.3.1.5.2-7, Table 5.3.2.5-2, Table 5.3.2.5.1-15, Table 5.4.1.5-2, Table 5.4.1.5.2-9, Table 5.4.2.5-2, Table 5.4.2.5.2-5, Table 5.4.3.5-2, Table 5.4.3.5.2-6, Table 5.4.4.5-2, Table 5.4.4.5.2-6, Table 5.5.1.5-2, Table 5.5.1.5.2-3, Table 7.3.1.5.1.2-8, Table 7.3.1.5.2, Table 7.4.1.5.1.2-7, Table 7.4.1.5.2, Table 7.4.2.5.1.1-15, Table 7.4.2.5.2, Table 7.5.1.5.1.2-9, Table 7.5.1.5.2, Table 7.5.2.5.1.2-5, Table 7.5.2.5.2, Table 7.5.3.5.1.2-6, Table 7.5.3.5.2, Table 7.5.4.5.1.2-6, Table 7.5.4.5.2, Table 7.6.1.5.1.2-3, Table 7.6.1.5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4164: SE-16 PUG: Space weather eclipse_flag flags do not capture all possible states</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-18819 DO.06.00.00 Vol 4, section 4.1, section 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4139: SE-16 PUG: GRB Default Modem Configuration - QPSK</td>
</tr>
<tr>
<td>REVISION</td>
<td>DATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| PTRDOC-18879 | DO.06.00.00 | Vol 4, section 2.0, section 5.0, section 6.0, section 6.2.6.3, section 7.1.3.6, section 7.3.1.5
 - WR 4179: SE-16 PUG: ABI L1b metadata sent prior to end of scene in GRB |
| PTRDOC-18890 | DO.06.00.00 | Vol 4, Table A
 - WR 3511: SE-16 PUG: Add statement on CCSDS reserved APIDs to the PUG |
| PTRDOC-18907 | DO.06.00.00 | Vol 3, section 5.3.1.1; Vol 4, section 7.4.1.1
 - WR 3257: SE-16 PUG: Resolve Time Stamp Error in EXIS Files-ADR 158 |
| PTRDOC-18910 | DO.06.00.00 | Vol 3, Table 5.3.1.5-2; Vol 4, Table 7.4.1.5.1, Table 7.4.1.5.2
 - WR 4205: SE-16 PUG: EXIS EUVS long name corrections-ADR278 |
| PTRDOC-18951 | DO.06.00.00 | Vol 3, Table 5.6.2.2-1
 - WR 3407: SE-16 PUG: GLM Background Image Metadata Differences from PUG |
| PTRDOC-18955 | DO.06.00.00 | Vol 1 – 5, Appendix X, several sections and tables
 - WR 4263: BCR_591 ATP for ECP-029, SE-16: ECP-029 - Update Product Users Guide (PUG) for Mode 6 functionality |
| PTRDOC-19131 | DO.07.00.00 | Vol 3, Table 5.2.1.1-1, Table 5.2.1.5.3-1, Table 5.2.1.5.4-2, Table A.1; Vol 4, Table 7.3.1.1-1, Table 7.3.1.5.1.1-1, Table 7.3.1.5.1.2-2
| PTRDOC-19350 | DO.06.00.00 | Vol 3, Table 5.3.1.5.2-3, Table 5.3.2.5.1-3; Vol 4, Table 7.4.1.5.1.2-3, Table 7.4.2.5.1.1-3
 - WR 4540: SE-16 PUG: EUVS and EXIS Processing and Data Quality Flag Meanings |
| F.1 29 November 2017 | PTRDOC-19542 | DO.06.00.00
 Vol 5, Table 4.3.6, Table 4.3.7-2, Table 4.3.7-3
 - WR 4182: SE-16 PUG: Displaced full disk Radiation data, Displaced CONUS radiation data - ADR 241, 242 |
| PTRDOC-18158 | DO.06.00.00 | Vol 3, Table 5.3.1.5-2; Vol 4, Table 7.4.1.5.1; Vol 4, Table 7.4.1.5.2
 - WR 3078: SE-16 PUG: EXIS - Add total number of valid SPS measurements used - ADR 148 |
<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTRDOC-19760</td>
<td>DO.06.00.00</td>
<td>Vol 3, Table D.6-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4709: SE-16 PUG: Incorporate GLM CallINR Tech Memo Rev A Changes (GLM CDRL-79 Rev H)</td>
</tr>
<tr>
<td>PTRDOC-20567</td>
<td>DO.06.00.00</td>
<td>Vol 3, Table D.2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3812: SE-16 PUG: Incorporate SUVI CallINR Tech Memo Changes - SUVI CDRL-80 Rev G</td>
</tr>
<tr>
<td>PTRDOC-18521</td>
<td>DO.06.00.00</td>
<td>Vol 4, Section 4.4.2.1; Vol 4, Figure 4.4.2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3904: SE-16 PUG: GRB primary header SCID mismatch with SANA registry and PUG</td>
</tr>
<tr>
<td>PTRDOC-19877</td>
<td>DO.06.00.00</td>
<td>Vol 4, Table 7.2.1.6.2; Vol 5, Table 5.26.6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 2691: SE-16 PUG: Abnormally large group areas in GLM L2+ products</td>
</tr>
<tr>
<td>PTRDOC-19295</td>
<td>DO.06.00.00</td>
<td>Vol 5, Table 5.1.6.3-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR 4466: SE-16 PUG: No downscaling method given in multiband CMI files - ADR 262</td>
</tr>
<tr>
<td>F.2</td>
<td>09 May 2018</td>
<td></td>
</tr>
<tr>
<td>PTRDOC-19357</td>
<td>DO.06.03.00</td>
<td>Vol 1, Table 2.0; Vol 3, Table 5.3.1.5.2-2, Table 5.3.1.5.2-8; Vol 4, Table 7.4.1.5.1.2-1, Table 7.4.1.5.1.2-5, Table 7.4.1.5.2; Table 7.4.1.5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4208: SE-16 PUG: EXIS/EUVS Data Quality Flags Conditions</td>
</tr>
<tr>
<td>PTRDOC-19843</td>
<td>DO.06.03.00</td>
<td>Vol 5, Tables 5.1.6.3-2 and 5.1.6.4-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4883: SE-16 PUG: ABI L2 SCMI Expansion of Valid Range - PRO Rel Type 2</td>
</tr>
<tr>
<td>PTRDOC-19919</td>
<td>DO.06.03.00</td>
<td>Vol 3, Table 5.3.1.5-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4399: SE-16 PUG: Update PUG for EUVS L1b files have no UNLIMITED dimension</td>
</tr>
<tr>
<td>PTRDOC-20181</td>
<td>DO.06.03.00</td>
<td>Vol 3, Table 5.3.1.5-2, Table 5.3.1.5.2-14; Vol 4, Table 7.4.1.5.1, Table 7.4.1.5.1.2-1, Table 7.4.1.5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4080: SE-16 PUG: Add Primary C Active and Secondary C Active flags to EXIS/EUVS-C</td>
</tr>
<tr>
<td>PTRDOC-20304</td>
<td>DO.06.03.00</td>
<td>Vol 3, Table 5.5.1.5-2; Vol 4, Table 7.6.1.5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4759: SE-16 PUG: Change MAG variable name number_samples_per_report-ADR 395 - PRO Rel Type 1</td>
</tr>
<tr>
<td>PTRDOC-20342</td>
<td>DO.06.03.00</td>
<td>Vol 3, Table 5.3.1.5.2-8, Table 5.3.1.5.2-10, Table 5.3.1.5.2-11, Table 5.3.2.5-2; Vol 4, Table 7.4.1.5.1.2-1, Table 7.4.1.5.1.2-5, Table 7.4.1.5.1.2-6</td>
</tr>
<tr>
<td>REVISION</td>
<td>DATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>WR 5141: SE-16 PUG: EXIS Flag issues-ADR 459-Pro Release Type 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-20466 DO.06.03.00 Vol 3, Table 5.3.1.5-2, Table 5.3.2.5-2; Vol 4, Table 7.4.1.5.1, Table 7.4.2.5.1, Table 7.4.2.5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WR 4598: SE-16 PUG: Update PUG for EXIS _Unsigned attribute change-ADR 355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-20467 DO.06.03.00 Vol 3, Table 5.3.1.5-2; Vol 4, Table 7.4.1.5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WR 3568: SE-16 PUG: Revise EXIS EUVS-C Cadence - ADR 183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-20626 DO.06.03.00 Vol 3, Table 5.3.2.5-2; Vol 4, Table 7.4.2.5.1, Table 7.4.2.5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WR 5096: SE-16 PUG: EXIS XRS Modify irradiance long names-ADR 446-PRO Release Type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-20667 DO.06.03.00 Vol 3, Table 5.4.4.5-2, Table D.4-3; Vol 4, Table 7.5.4.5.1, Table 7.5.4.5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WR 4864: SE-16 PUG: SEISS - Add SGPS Temperatures to L1b product-ADR 405 PRO Rel Type 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-20873 DO.06.03.00 Vol 3, Table 5.3.1.5-2, Table 5.3.1.5.2-2, Table 5.3.1.5.2-5, Table 5.3.1.5.2-7, Table 5.3.1.5.2-9, Table 5.3.1.5.2-11, Table 5.3.2.5.1-4; Vol 4, Table 7.4.1.5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WR 4719: SE-16 PUG: EXIS L1b Data Quality Flag Additional Definition Info - ADR 366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-20965 DO.06.03.00 Vol 3, Table D.3-4, Table D.3-5, Table D.3-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WR 5206: SE-16 PUG: Incorporate EXIS CallNR Tech Memo Rev B Changes - compliance with EXIS CDRL-79 Rev G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-21089 DO.06.03.00 Vol 3, Table 5.3.1.5-2; Vol 4, Table 7.4.1.5.1, Table 7.4.1.5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WR 5097: SE-16 PUG: EXIS EUVS fix units for line variables - ADR 447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-21119 DO.06.03.00 Vol 3, Table 5.3.1.5-1, Table 5.3.1.5-2; Vol 4, Table 7.4.1.5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WR 5334: SE-16 PUG: EXIS EUVS Add bandpasses for lines-ADR 448-PRO Release Type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTRDOC-21212 DO.06.03.00 Vol 3, Table 5.3.1.5-2, Table 5.3.2.5-2; Vol 4, Table 7.4.1.5.2, Table 7.4.2.5.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NON-Export Controlled Information
<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| G | 16 August 2018 | PTRDOC-18254 DO.07.00.00 Vol 5, Section 5.2.1
• WR 5688: SE-16 PUG: Change EXIS au_factor range - ADR 543-PRO Release Type 1
• WR 2702: SE-16 PUG: ABI Cloud Mask (ACM) Algorithm Metadata Issues
PTRDOC-18906 DO.07.00.00 Vol 3, Table 5.3.1.5-2; Vol 4, Table 7.4.1.5.1
• WR 3569: SE-16 PUG: EXIS - Add high-resolution EUVS data ADR 174
PTRDOC-19627 DO.07.00.00 Volume 3; Volume 4; Volume 5; Appendix X
• WR 4597: SE-16 PUG: L2 CMI Metadata issue - ADR 315
PTRDOC-19832 DO.07.00.00 Vol 4, Table 7.2.1.6.1.1, .2, .3, Table 7.2.1.6.2, Table 7.2.1.6.1.1, .2; Vol 5, Section 5.26.5, Table 5.26.6-2
• WR 4507: SE-16 PUG: Incorporate GLM L2+ time variable changes - ADR 338
PTRDOC-19853 DO.07.00.00 Vol 5, Table 5.17.6-2, Table E.1.2-1
• WR 4186: SE-16 PUG: DMW product format changes
PTRDOC-20321 DO.07.00.00 Vol 3, Table D.2-1
• WR 4921: SE-16 PUG: Incorporate SUVI CalINR Tech Memo Rev B Changes - Contamination Correction
PTRDOC-20456 DO.07.00.00 Vol 3, Table 5.5.1.5-2; Vol 4, Table 7.6.1.5.1.2-1
• WR 5133, 5134: SE-16 PUG: Add MAG L1b GEOF arcjet firing and shadow DQFs-ADR 449, 450
PTRDOC-20777 DO.07.00.00 Vol 3, Section D.7
• WR 5520: SE-16 PUG: Incorporate ABI [Cal] INR Tech Memo Rev 1 Changes
PTRDOC-20819 DO.07.00.00 Vol 5, Table 5.11.2-1, Table 5.11.2-2, Table 5.11.3, Table C.1, Table C.2-1, Table D.1
• WR 4694: SE-16 PUG: VolAsh updates from beta PS-PVR-ADR 388 - PRO Release Type 1
PTRDOC-20866 DO.07.00.00 Vol 4, Table 7.2.1.6.2; Vol 5, Table 5.26.6-2
• WR 4696: SE-16 PUG: Group and flash areas GLM L2 - ADR 382
<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTRDOC-20967</td>
<td>DO.07.00.00</td>
<td>Vol 3, Section D.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5133: SE-16 PUG: Incorporate MAG CalINR Tech Memo Rev C Changes - Arcjet firing/not firing flag</td>
</tr>
<tr>
<td>PTRDOC-21118</td>
<td>DO.07.00.00</td>
<td>Vol 5, Table 5.23.2-1, Table C.1, Table C.2-1, Table D.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5425: SE-16 PUG: Incorrect variable attributes in SST netCDF files-ADR 495-PRO Release Type 1</td>
</tr>
<tr>
<td>PTRDOC-21210</td>
<td>DO.07.00.00</td>
<td>Vol 5, Table 5.12.6-2, Table C.2-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5337: SE-16 PUG 101-Pressure Level Table is Inverted - ADR 487-PRO Release Type 1</td>
</tr>
<tr>
<td>PTRDOC-21334</td>
<td>DO.07.00.00</td>
<td>Vol 5, Section 5.23.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4925, 4596: SE-16 PUG: SST Algorithm Changes - ADR 271, 270 - PRO Release Type 1</td>
</tr>
<tr>
<td>PTRDOC-21335</td>
<td>DO.07.00.00</td>
<td>Vol 5, Table 5.19.6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4638: SE-16 PUG: Fire Product Mask Value - ADR 349 - PRO Release Type 1</td>
</tr>
<tr>
<td>PTRDOC-21421</td>
<td>DO.07.00.00</td>
<td>Vol 5, Table 5.9.6.1-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5393: SE-16 PUG: ADP Additional Data Quality Flags - ADR 394 - PRO Release Type 1</td>
</tr>
<tr>
<td>PTRDOC-21468</td>
<td>DO.07.00.00</td>
<td>Vol 5, Table 5.19.6.1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5578: SE-16 PUG: L2 Fire Product - Add New Mask Value - ADR 548 - PRO Release Type 1</td>
</tr>
<tr>
<td>PTRDOC-21469</td>
<td>DO.07.00.00</td>
<td>Vol 5, Table 5.9.2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5508: SE-16 PUG: ADP Additional Input Data - ADR 496 - PRO Release Type 1</td>
</tr>
<tr>
<td>PTRDOC-21545</td>
<td>DO.07.00.00</td>
<td>Vol 3 (multiple products); Vol 3, Table D.3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5370: SE-16 PUG: LUT Filenames not Traceable to Metadata-ADR 267-PRO Release Type 2</td>
</tr>
<tr>
<td>PTRDOC-21636</td>
<td>DO.07.00.00</td>
<td>Vol 3, Table A.6; Vol 5, Table A.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5213: SE-16 PUG: Update Algorithm Package File Names</td>
</tr>
<tr>
<td>PTRDOC-21802</td>
<td>DO.07.00.00</td>
<td>Vol 5, Table 5.20.6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4511: SE-16 PUG: Update LST variable attributes - ADR 340 - PRO Release Type 1</td>
</tr>
<tr>
<td>PTRDOC-21839</td>
<td>DO.07.00.00</td>
<td>Vol 5, Table 5.10.2-1</td>
</tr>
<tr>
<td>REVISION</td>
<td>DATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5863: SE-16 PUG: AOD algorithm updates for provisional status - ADR 498 - PRO Release Type 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-21902 DO.07.00.00 Vol 5, Table 5.2.4, Table 5.2.6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 6199: SE-16 PUG: Percentages for clear/probably clear/probably cloud - ADR 45</td>
</tr>
<tr>
<td>G.1</td>
<td>14 February 2019</td>
<td>PTRDOC-20546 DO.07.01.00 Vol 3, Tables 5.3.1.5-2, 5.3.2.5-2, 5.4.2.5-2, 5.4.3.5-2, 5.4.4.5-2; Vol 4, Tables 7.4.1.5.1, 7.4.1.5.2, 7.4.2.5.1, 7.4.2.5.2, 7.5.2.5.1, 7.5.2.5.2, 7.5.3.5.1, 7.5.3.5.2, 7.5.4.5.1, 7.5.4.5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 4552: SE-16 PUG: Clarifying Space Weather Time Stamp Definitions - ADR 176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-22064 DO.07.01.00 Vol 3, Table 5.3.2.5-2; Vol 4, Table 7.4.2.5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 5859: SE-16 PUG: EXIS roll angle - ADR 590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-22475 DO.07.01.00 Vol 3, Table 5.3.2.5-2; Vol 4, Table 7.4.2.5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 6480: SE-16 PUG: Update valid_range for EXIS/XRS Currents and Irradiances variables - ADR 779</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-22579 DO.07.01.00 Vol 3, Table 5.3.1.5-2; Vol 4, Tables 7.4.1.5.1, 7.4.1.5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 3569: SE-16 PUG: EXIS - Add high-resolution EUVS data ADR 174 - Fix Fail</td>
</tr>
<tr>
<td>G.2</td>
<td>08 March 2019</td>
<td>PTRDOC-22481 DO.07.02.00 Vol 3, Tables 5.1.3.6.1-2, 5.1.3.6.2-2, 5.1.3.6.4, D.1-7 Vol 4, Tables 7.1.3.6.1.2, 7.1.3.6.2.1, 7.1.3.6.2.2 Vol 5, Tables 5.1.6.1-2, 5.1.6.2-2, 5.1.6.3-2, 5.1.6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 6582: SE-16 PUG: ABI L1b and L2+ CMI temperature data quality flag (TDQF) - ADR 827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTRDOC-22268 DO.07.02.00 Vol 3, Table D.1-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WR 6348: SE-16 PUG: Updates for ABI CDRL-80 Rev G and CDRL-79 - ADR 741</td>
</tr>
</tbody>
</table>

NON-Export Controlled Information
TABLE OF CONTENTS FOR APPENDIX X

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Scope</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>ISO SERIES METADATA OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>LEVEL 0 PRODUCT ISO SERIES METADATA</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>ABI Level 0 Product ISO Series Metadata</td>
<td>3</td>
</tr>
<tr>
<td>3.2</td>
<td>GLM Level 0 Product ISO Series Metadata</td>
<td>9</td>
</tr>
<tr>
<td>3.3</td>
<td>SUVI Level 0 Product ISO Series Metadata</td>
<td>15</td>
</tr>
<tr>
<td>3.4</td>
<td>EXIS Level 0 Product ISO Series Metadata</td>
<td>21</td>
</tr>
<tr>
<td>3.5</td>
<td>SEISS Level 0 Product ISO Series Metadata</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>Magnetometer Level 0 Product ISO Series Metadata</td>
<td>33</td>
</tr>
<tr>
<td>4.0</td>
<td>LEVEL 1B PRODUCT AND DATA ISO SERIES METADATA</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Level 1b Products</td>
<td>39</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Radiiances Product ISO Series Metadata</td>
<td>39</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Level 1b SUVI Solar Imagery: Extreme Ultraviolet Product ISO Series Metadata</td>
<td>54</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Solar Flux: Extreme Ultraviolet Product ISO Series Metadata</td>
<td>61</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Solar Flux: X-Ray Product ISO Series Metadata</td>
<td>67</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Energetic Heavy Ions Product ISO Series Metadata</td>
<td>74</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Magnetospheric Electrons and Protons: Low Energy Product ISO Series Metadata</td>
<td>82</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Magnetospheric Electrons and Protons: Medium and High Energy Product ISO Series Metadata</td>
<td>88</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Solar and Galactic Protons Product ISO Series Metadata</td>
<td>96</td>
</tr>
<tr>
<td>4.1.9</td>
<td>Geomagnetic Field Product ISO Series Metadata</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Level 1b Data</td>
<td>110</td>
</tr>
<tr>
<td>4.2.1</td>
<td>GRB Information ISO Series Metadata</td>
<td>110</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Sample Outlier Data ISO Series Metadata</td>
<td>119</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Instrument Calibration Data</td>
<td>128</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Level 1b Semi-Static Source Data ISO Series Metadata</td>
<td>159</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Level 1b Algorithm Packages</td>
<td>162</td>
</tr>
<tr>
<td>5.0</td>
<td>LEVEL 2+ PRODUCT AND DATA ISO SERIES METADATA</td>
<td>165</td>
</tr>
<tr>
<td>5.1</td>
<td>Level 2+ Products</td>
<td>165</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Cloud and Moisture Imagery Product ISO Series Metadata</td>
<td>165</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Clear Sky Mask Product ISO Series Metadata</td>
<td>179</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Cloud Top Phase Product ISO Series Metadata</td>
<td>189</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Cloud Top Height Product ISO Series Metadata</td>
<td>199</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Cloud Top Pressure Product ISO Series Metadata</td>
<td>209</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Cloud Top Temperature Product ISO Series Metadata</td>
<td>218</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Cloud Optical Depth ISO Series Metadata</td>
<td>227</td>
</tr>
<tr>
<td>5.1.8</td>
<td>Cloud Particle Size Distribution Product ISO Series Metadata</td>
<td>237</td>
</tr>
<tr>
<td>5.1.9</td>
<td>Aerosol Detection Product ISO Series Metadata</td>
<td>248</td>
</tr>
<tr>
<td>5.1.10</td>
<td>Aerosol Optical Depth Product ISO Series Metadata</td>
<td>258</td>
</tr>
<tr>
<td>5.1.11</td>
<td>Volcanic Ash: Detection and Height Product ISO Series Metadata</td>
<td>267</td>
</tr>
<tr>
<td>5.1.12</td>
<td>Legacy Vertical Temperature Profile Product ISO Series Metadata</td>
<td>276</td>
</tr>
<tr>
<td>5.1.13</td>
<td>Legacy Vertical Moisture Profile Product ISO Series Metadata</td>
<td>287</td>
</tr>
<tr>
<td>5.1.14</td>
<td>Total Precipitable Water Product ISO Series Metadata</td>
<td>298</td>
</tr>
<tr>
<td>5.1.15</td>
<td>Derived Stability Indices Product ISO Series Metadata</td>
<td>308</td>
</tr>
</tbody>
</table>
5.1.16 Rainfall Rate (Quantitative Precipitation Estimate) Product ISO Series Metadata 321
5.1.17 Derived Motion Winds Product ISO Series Metadata ... 330
5.1.18 Hurricane Intensity Product ISO Series Metadata .. 340
5.1.19 Fire (Hot Spot Characterization) Product ISO Series Metadata 349
5.1.20 Land Surface (Skin) Temperature Product ISO Series Metadata 360
5.1.21 Snow Cover Product ISO Series Metadata ... 370
5.1.22 Sea Surface (Skin) Temperature Product ISO Series Metadata 379
5.1.23 Downward Shortwave Radiation: Surface Product ISO Series Metadata 388
5.1.25 Surface Albedo Product ... 408
5.1.26 Lightning Detection Product ISO Series Metadata ... 408
5.2 Level 2+ Data ... 420
5.2.1 Level 2+ Semi-Static Source Data ... 420
5.2.2 Level 2+ Algorithm Packages .. 422
6.0 ISO SERIES METADATA FILENAME CONVENTIONS 425
6.1 Level 0 Products ... 426
6.2 Level 1b Products and Data .. 426
6.3 Level 2+ Products and Data ... 428
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6.0-1</td>
<td>Common Filename String Fields ..</td>
<td>425</td>
</tr>
<tr>
<td>Table 6.0-2</td>
<td>Appendix X Filename Convention Paragraphs for Specific ISO Series Metadata Types</td>
<td>426</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Level 0 ISO Series Metadata DSNs ..</td>
<td>426</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Level 1b ISO Series Metadata DSNs ..</td>
<td>427</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Level 2+ ISO Series Metadata DSNs ...</td>
<td>428</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 Scope

The Product Definition and User’s Guide (PUG) document provides product descriptions and formats for all data and products produced and made available to users by the Geostationary Operational Environmental Satellite R Series (GOES-R) Core Ground Segment (GS), developed under contract DG133E-09-CN-0094. This includes the Level 0 products, Level 1b products, GOES-R Rebroadcast (GRB), and Level 2+ products. This also includes ISO series metadata, instrument calibration data, and semi-static source data and algorithm packages.

This is an appendix to the PUG containing a detailed description of the ISO series metadata.

2.0 ISO SERIES METADATA OVERVIEW

GOES-R metadata is designed to serve two purposes:

- To support long-term archive and facilitate data discovery, evaluation, retrieval, use and reuse.
- To provide supplemental information for further processing, algorithm development, diagnostic and anomaly resolution and better understanding of each dataset.

For each Level 0, Level 1b, and Level 2+ product, ABI sample outlier data, instrument calibration data, and Level 1b and Level 2+ semi-static source data and algorithm packages, metadata is provided in an ISO-compliant XML product series (i.e., collection) level file. This metadata is in addition to the embedded native metadata existing in the GOES-R product and data files and is used to discover, display, exploit and further process the data. The ISO series metadata contains a set of “quasi-static” metadata elements that describe a collection of instances of a product or data. Their format, content, and citations to documents and points of contact are provided. Note that a complete ISO metadata record is produced by combining the series metadata with metadata in the product and data files using the ncISO functionality available at the NOAA Data Centers.

To present ISO Series Metadata in a readable format, each ISO xml file was transformed to text using a tool provided by NOAA National Geophysical Data Center (NGDC). The deeply nested xml format is flattened and includes only the specific fields containing metadata values. This presentation format provides links to the definitions of every ISO 19115 Universal Modeling Language (UML) class object and code list via a NOAA Enterprise Data Management (EDM) web site.

For example, given the following subset of ISO Series Metadata:

```
acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and provides ...
```

If the reader hovers their mouse over (MI_AcquisitionInformation), presses Ctrl+Click and is connected to the Internet, the NOAA EDM web page for that ISO UML class will display:
Further and complete details are available on the web site by clicking keywords (such as “Operation”) on the page and subsequent pages:
The filename conventions for ISO series metadata are located in paragraph 6.0, ISO Series Metadata Filename Conventions.

3.0 LEVEL 0 PRODUCT ISO SERIES METADATA

3.1 ABI Level 0 Product ISO Series Metadata

```xml
(MI_Metadata)
  fileIdentifier: 405cba30-aba1-11e3-a5e2-0800200e9a66
  language: eng
  characterSet: (MD_CharacterSetCode) utf8
  parentIdentifier:
  hierarchyLevel: (MD_ScopeCode) series
  hierarchyLevelName: ISO Series Metadata for ABI L0 Product Collection
  contact: (CI_ResponsibleParty)
    organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
    contactInfo: (CI_Contact)
      address: (CI_Address)
        deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
        city: Silver Spring
        administrativeArea: MD
        postalCode: 20910
        country: USA
        electronicMailAddress: GOES-R@noaa.gov
      role: (CI_RoleCode) originator
      dateStamp: 2017-05-11
  metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
  dataSetURI: OR_ABI-L0-ISO-SERIES_c20171311116000.xml

(identificationInfo)
  citation: (CI_Citation)
    title: GOES-R Advanced Baseline Imager (ABI) Aggregated L0 Data Packets
    alternateTitle: Data short name (DSN): ABI-L0
    date:
      identifier: (MD_Identifier)
        authority: (CI_Citation)
          title: gov.nesdis.noaa
          date: (CI_Date)
            date: 2014
            dateType: (CI_DateTypeCode) revision
        code: ABI-L0
      citedResponsibleParty: (CI_ResponsibleParty)
```
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: Advanced Baseline Imager (ABI) L0 data is comprised of unprocessed science data packets and telemetry packets. All science data and most telemetry data is sourced by the ABI instrument. L0 data includes select spacecraft telemetry in addition to instrument telemetry. ABI L0 data also includes orbit and attitude data and angular rate telemetry data (OAR), containing orbit ephemeris and satellite position.

pointOfContact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
 name: netCDF
 version: 4
descriptiveKeywords: (MD_Keywords)
 keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > SENSOR COUNTS
 keyword: SPECTRAL/ENGINEERING > VISIBLE WAVELENGTHS > SENSOR COUNTS
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
 date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode)
 edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 aName: abi_space_packet_data
attributeType:
descriptor: GOES-R Advanced Baseline Imager (ABI) L0 CCSDS Space Packets
units:
scaleFactor:
offset:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: Advanced Baseline Imager (ABI) front-end processing starts on the
spacecraft where space packets are multiplexed placing multiple packets in each transfer frame. Forward error correction (FEC) coding (Low-Density Parity Check - LDPC) occurs and the packets are downlinked. The data is received, forward error correction decode is performed. In the event of an uncorrectable error the transfer frame is discarded. Error-free space packets are then extracted from the transfer frames. ABI science data arrives at the ground system from the spacecraft in a compressed format. The data is decompressed then packaged for delivery to external interfaces.

processor: (CI_ResponsibleParty)
- **organisationName:** WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 - **role:** (CI_RoleCode) processor

processor: (CI_ResponsibleParty)
- **organisationName:** RBU (Remote Backup Unit, Fairmont, WV)
 - **role:** (CI_RoleCode) processor

output: (LE_Source)
- **processedLevel:** (MD_Identifier)
- **authority:** (CI_Citation)
 - **title:** NOAA Processing Levels
 - **date:** (CI_Date)
 - **date:** 2013-11
 - **dateType:** (CI_DateTypeCode) revision
 - **citedResponsibleParty:** (CI_ResponsibleParty)
 - **organisationName:** National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
 - **contactInfo:** (CI_Contact)
 - **onlineResource:** (CI_OnlineResource)
 - **linkage:** https://www.ngdc.noaa.gov/wiki/index.php?title=NOAA_Processing_Levels
 - **role:** (CI_RoleCode) publisher
 - **code:** L0

metadataMaintenance: (MD_MaintenanceInformation)
- **maintenanceAndUpdateFrequency:** (MD_MaintenanceFrequencyCode) asNeeded
- **maintenanceNote:** GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
- **operation:** (MI_Operation)
 - **description:** The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of
meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing

parentOperation:

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-16
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16
for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-17
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to
weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

3.2 GLM Level 0 Product ISO Series Metadata

(fileIdentifier: f82fe080-a560-11e4-bcd8-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier:
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for GLM L0 Product Collection
contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_GLM-L0-ISO-SERIES_c20171311119000.xml

identificationInfo: (MD_Identifier)
citation: (CI_Citation)
title: GOES-R Geostationary Lightning Mapper (GLM) Aggregated L0 Data Packets
alternateTitle: Data short name (DSN): GLM-L0
date:
identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: gov.nesdis.noaa
date: (CI_Date)
 date: 2014
dateType: (CI_DateTypeCode) revision
code: GLM-L0
citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: Geostationary Lightning Mapper (GLM) L0 data is comprised of unprocessed science data packets and telemetry packets. All science data and most telemetry data is sourced by the GLM instrument. L0 data includes select spacecraft telemetry in addition to instrument telemetry.
pointOfContact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
 name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
 keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > SENSOR COUNTS
 keyword: SPECTRAL/ENGINEERING > VISIBLE WAVELENGTHS > SENSOR COUNTS
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
 date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 beginPosition: 2017-05-11
 endPosition: now
contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: glm_space_packet_data
 attributeType:
 descriptor: GOES-R Geostationary Lightning Mapper (GLM) L0 CCSDS Space Packets
units: scaleFactor: offset:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
 identifier: percent
unitsSystem:
value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: Geostationary Lightning Mapper (GLM) front-end processing starts on the spacecraft where space packets are multiplexed placing multiple packets in each transfer frame. Forward error correction (FEC) coding (Low-Density Parity Check - LDPC) occurs and the packets are downlinked. The data is received, forward error correction decode is performed. In the event of an uncorrectable error the transfer frame is discarded. Error-free space packets are then extracted from the transfer frames. GLM science data arrives at the ground system from the spacecraft in a compressed format. The data is decompressed then packaged for delivery to external interfaces.

processor: (CI_ResponsibleParty)
 organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 role: (CI_RoleCode) processor

processor: (CI_ResponsibleParty)
 organisationName: RBU (Remote Backup Unit, Fairmont, WV)
 role: (CI_RoleCode) processor

output: (LE_Source)
processedLevel: (MD_Identifier)
authority: (CI_Citation)
 title: NOAA Processing Levels
 date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
 citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: National Oceanographic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
 onlineResource: (CI_OnlineResource)
 role: (CI_RoleCode) publisher
 code: L0

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and...
the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/glm.html
date:
code: GOES-16 GLM instrument_id (serial number)
type: Geostationary Lightning Mapper
description: The Geostationary Lightning Mapper is a single-channel, near-infrared optical transient detector that detects the momentary changes in an optical scene, indicating the presence of lightning. GLM measures total lightning activity continuously over the Americas and adjacent ocean regions with near uniform spatial resolution of approximately 10 km. GLM provides early predictions of intensifying storms and severe weather events. It also provides data for long-term climate studies. The instrument aids forecasting of weather events that could affect aviation safety and efficiency. GLM is unique both in how it operates and in the information it collects. While ground-based sensors only provide cloud-to-ground lightning coverage, GLM provides total lightning activity detection with both cloud-to-ground and cloud-to-cloud coverage. Also, ground-based systems can only provide coverage over land. GLM identifies growing, active and potentially destructive thunderstorms in areas over both land and oceans. The instrument collects information such as the frequency and location of lightning events to detect the intensification of thunderstorms and tropical cyclones, which are often accompanied by increased lightning activity.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.
The Geostationary Lightning Mapper is a single-channel, near-infrared optical transient detector that detects the momentary changes in an optical scene, indicating the presence of lightning. GLM measures total lightning activity continuously over the Americas and adjacent ocean regions with near uniform spatial resolution of approximately 10 km. GLM provides early predictions of intensifying storms and severe weather events. It also provides data for long-term climate studies. The instrument aids forecasting of weather events that could affect aviation safety and efficiency. GLM is unique both in how it operates and in the information it collects. While ground-based sensors only provide cloud-to-ground lightning coverage, GLM provides total lightning activity detection with both cloud-to-ground and cloud-to-cloud coverage. Also, ground-based systems can only provide coverage over land. GLM identifies growing, active and potentially destructive thunderstorms in areas over both land and oceans. The instrument collects information such as the frequency and location of lightning events to detect the intensification of thunderstorms and tropical cyclones, which are often accompanied by increased lightning activity.

3.3 SUVI Level 0 Product ISO Series Metadata

((MI_Metadata))
 fileIdentifier: 1a47ee90-a561-11e4-bcd8-0800200c9a66
 language: eng
 characterSet: (MD_CharacterSetCode) utf8
 parentIdentifier:
 hierarchyLevel: (MD_ScopeCode) series
 hierarchyLevelName: ISO Series Metadata for SUVI L0 Product Collection
 contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
 role: (CI_RoleCode) originator
 dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_SUVI-L0-ISO-SERIES_c20171311122000.xml

identificationInfo: (MD_Identifier)
citation: (CI_Citation)
title: GOES-R Solar Ultraviolet Imager (SUVI) Aggregated L0 Data Packets
alternateTitle: Data short name (DSN): SUVI-L0
date:
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: gov.nesdis.noaa
date: (CI_Date)
 date: 2014
dateType: (CI_DateTypeCode) revision
code: SUVI-L0
citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: Solar Ultraviolet Imager (SUVI) L0 data is comprised of unprocessed science data packets and telemetry packets. All science data and most telemetry data is sourced by the SUVI instrument. L0 data includes select spacecraft telemetry in addition to instrument telemetry.
pointOfContact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
 name: netCDF
version: 4

descriptiveKeywords: (MD_Keyword)
 keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > SENSOR COUNTS
 keyword: SPECTRAL/ENGINEERING > VISIBLE WAVELENGTHS > SENSOR COUNTS

type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
 date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
 edition: Version 7.0.0.0.0

 citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author

resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
 classification: (MD_ClassificationCode) unclassified

language: eng; USA

cHaracterSet: (MD_CharacterSetCode) utf8

topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere

temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

contentInfo: (MI_CoverageDescription)

attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)

sequenceIdentifier:
 MemberName:
 aName: suvi_space_packet_data
 attributeType:

descriptor: GOES-R Solar Ultraviolet Imager (SUVI) L0 CCSDS Space Packets

units:
 scaleFactor:
 offset:
dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent uncorrectable L0 errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: Solar Ultraviolet Imager (SUVI) front-end processing starts on the spacecraft where space packets are multiplexed placing multiple packets in each transfer frame. Forward error correction (FEC) coding (Low-Density Parity Check - LDPC) occurs and the packets are downlinked. The data is received, forward error correction decode is performed. In the event of an uncorrectable error the transfer frame is discarded. Error-free space packets are then extracted from the transfer frames. SUVI science data arrives at the ground system from the spacecraft in a compressed format. The data is decompressed then packaged for delivery to external interfaces.

 processor: (CI_ResponsibleParty)
 organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 role: (CI_RoleCode) processor
 processor: (CI_ResponsibleParty)
 organisationName: RBU (Remote Backup Unit, Fairmont, WV)
 role: (CI_RoleCode) processor
 output: (LE_Source)
 processedLevel: (MD_Identifier)
 authority: (CI_Citation)
 title: NOAA Processing Levels
 date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
 citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
 contactInfo: (CI_Contact)
 onlineResource: (CI_OnlineResource)
 linkage: https://www.ngdc.noaa.gov/wiki/index.php?title=NOAA_Processing_Levels
 role: (CI_RoleCode) publisher
code: L0

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth’s surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and
XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/suvi.html
date:
code: GOES-16 SUVI instrument_id (serial number)
type: Solar Ultraviolet Imager

description: The Solar Ultraviolet Imager is a telescope that monitors the Sun in the extreme ultraviolet wavelength range. SUVI observes and characterizes complex active regions of the Sun, solar flares, and the eruptions of solar filaments which may give rise to coronal mass ejections. Depending on the size and the trajectory of solar eruptions, the possible effects to near-Earth space and Earth’s magnetosphere, referred to as space weather, can cause geomagnetic storms which disrupt power utilities, communication and navigation systems, and may cause radiation damage to orbiting satellites and the International Space Station. SUVI observations of solar flares and solar eruptions provide an early warning of possible impacts to Earth’s space environment and enable better forecasting of potentially disruptive events on the ground.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.
instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/suvi.html
date: code: GOES-17 SUVI instrument_id (serial number)
type: Solar Ultraviolet Imager
description: The Solar Ultraviolet Imager is a telescope that monitors the Sun in the extreme ultraviolet wavelength range. SUVI observes and characterizes complex active regions of the Sun, solar flares, and the eruptions of solar filaments which may give rise to coronal mass ejections. Depending on the size and the trajectory of solar eruptions, the possible effects to near-Earth space and Earth’s magnetosphere, referred to as space weather, can cause geomagnetic storms which disrupt power utilities, communication and navigation systems, and may cause radiation damage to orbiting satellites and the International Space Station. SUVI observations of solar flares and solar eruptions provide an early warning of possible impacts to Earth’s space environment and enable better forecasting of potentially disruptive events on the ground.

3.4 EXIS Level 0 Product ISO Series Metadata

(MI_Metadata)
fileIdentifier: 542948c0-a561-11e4-bcd8-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for EXIS L0 Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions
for imagery and gridded data

metadataStandardVersion: ISO 19115-2:2009(E)

dataSetURI: OR_EXIS-L0-ISO-SERIES_c20171311118000.xml

identificationInfo: (MD_DatadIdentification)

citation: (CI_Citation)

title: GOES-R Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) Aggregated L0 Data Packets

alternateTitle: Data short name (DSN): EXIS-L0

date:

identifier: (MD_Identifier)

authority: (CI_Citation)

title: gov.nesdis.noaa

date: (CI_Date)

date: 2014

dateType: (CI_DateTypeCode) revision

code: EXIS-L0

citedResponsibleParty: (CI_ResponsibleParty)

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

address: (CI_Address)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor

city: Silver Spring

administrativeArea: MD

postalCode: 20910

country: USA

electronicMailAddress: goes-r@noaa.gov

role: (CI_RoleCode) originator

abstract: The Extreme Ultraviolet and X-ray Irradiance Sensors detect solar soft X-ray irradiance and solar extreme ultraviolet spectral irradiance in the 5-127 nm range. The X-Ray Sensor (XRS) monitors solar flares that can disrupt communications and degrade navigational accuracy, affecting satellites, astronauts, high latitude airline passengers, and power grid performance. The Extreme Ultraviolet (EUV) Sensor monitors solar variations that directly affect satellite drag/tracking and ionospheric changes, which impact communications and navigation operations. This information is critical to understanding the outer layers of the Earth’s atmosphere. L0 data includes select spacecraft telemetry in addition to instrument telemetry.

pointOfContact: (CI_ResponsibleParty)

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

address: (CI_Address)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor

city: Silver Spring

administrativeArea: MD

postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > SENSOR COUNTS
keyword: SPECTRAL/ENGINEERING > VISIBLE WAVELENGTHS > SENSOR COUNTS
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: exis_space_packet_data
 attributeType:
 descriptor: GOES-R EUV and X-Ray Irradiance Sensors (EXIS) L0 CCSDS Space
Packets

units:
scaleFactor:
offset:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) front-end processing starts on the spacecraft where space packets are multiplexed placing multiple packets in each transfer frame. Forward error correction (FEC) coding (Low-Density Parity Check - LDPC) occurs and the packets are downlinked. The data is received, forward error correction decode is performed. In the event of an uncorrectable error the transfer frame is discarded. Error-free space packets are then extracted from the transfer frames. EXIS science data arrives at the ground system from the spacecraft in a compressed format. The data is decompressed then packaged for delivery to external interfaces.
 processor: (CI_ResponsibleParty)
 organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 role: (CI_RoleCode)
 processor: (CI_ResponsibleParty)
 organisationName: RBU (Remote Backup Unit, Fairmont, WV)
 role: (CI_RoleCode) processor
 output: (LE_Source)
 processedLevel: (MD_Identifier)
 authority: (CI_Citation)
 title: NOAA Processing Levels
 date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
 citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: National Oceanographic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/exis.html
date:
code: GOES-16 EXIS instrument_id (serial number)
type: EUV and X-Ray Irradiance Sensors (EXIS)
description: The Extreme Ultraviolet and X-ray Irradiance Sensors detect solar soft X-ray irradiance and solar extreme ultraviolet spectral irradiance in the 5-127 nm range. The X-Ray Sensor (XRS) monitors solar flares that can disrupt communications and degrade navigational accuracy, affecting satellites, astronauts, high latitude airline passengers, and power grid performance. The Extreme Ultraviolet Sensor monitors solar variations that directly affect satellite drag/tracking and ionospheric changes, which impact communications and navigation operations. This information is critical to understanding the outer layers of the Earth’s atmosphere. EXIS will reside on the Sun Pointing Platform mounted in the yoke of the solar array.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information
Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of
distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs)
and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational
constellation provides coverage operationally from two locations, one at 75° West longitude and
the second at 137° West longitude.

\begin{itemize}
\item \textbf{instrument:} (MI_Instrument)
\item \textbf{identifier:} (MD_Identifier)
\item \textbf{authority:} (CI_Citation)
\item \textbf{title:} http://www.goes-r.gov/spacesegment/exis.html
\item \textbf{date:}
\item \textbf{code:} GOES-17 EXIS instrument_id (serial number)
\item \textbf{type:} EUV and X-Ray Irradiance Sensors (EXIS)
\item \textbf{description:} The Extreme Ultraviolet and X-ray Irradiance Sensors detect solar soft
X-ray irradiance and solar extreme ultraviolet spectral irradiance in the 5-127 nm range. The X-
Ray Sensor (XRS) monitors solar flares that can disrupt communications and degrade
navigational accuracy, affecting satellites, astronauts, high latitude airline passengers, and power
grid performance. The Extreme Ultraviolet Sensor monitors solar variations that directly affect
satellite drag/tracking and ionospheric changes, which impact communications and navigation
operations. This information is critical to understanding the outer layers of the Earth’s
atmosphere. EXIS will reside on the Sun Pointing Platform mounted in the yoke of the solar
array.
\end{itemize}

\section*{3.5 SEISS Level 0 Product ISO Series Metadata}

\begin{itemize}
\item \textbf{fileIdentifier:} 85e0f200-a561-11e4-bcd8-0800200c9a66
\item \textbf{language:} eng
\item \textbf{characterSet:} (MD_CharacterSetCode) utf8
\item \textbf{parentIdentifier:}
\item \textbf{hierarchyLevel:} (MD_ScopeCode) series
\item \textbf{hierarchyLevelName:} ISO Series Metadata for SEISS L0 Product Collection
\item \textbf{contact:} (CI_ResponsibleParty)
\item \textbf{organisationName:} DOC/NOAA/NESDIS > National Environmental Satellite, Data, and
Information Services, NOAA, U.S. Department of Commerce
\item \textbf{contactInfo:} (CI_Contact)
\item \textbf{address:} (CI_Address)
\item \textbf{deliveryPoint:} 1335 East-West Highway, SSMC1, 8th Floor
\item \textbf{city:} Silver Spring
\item \textbf{administrativeArea:} MD
\item \textbf{postalCode:} 20910
\end{itemize}
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_SEIS-L0-ISO-SERIES_c20171311121000.xml

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: GOES-R Space Environment In-Situ Suite (SEISS) Aggregated L0 Data Packets
alternateTitle: Data short name (DSN): SEIS-L0
date:
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: SEIS-L0
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: Space Environment In-Situ Suite (SEISS) L0 data is comprised of unprocessed science data packets and telemetry packets. All science data and most telemetry data is sourced by the SEISS instrument. L0 data includes select spacecraft telemetry in addition to instrument telemetry.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
 keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > SENSOR COUNTS
 keyword: SPECTRAL/ENGINEERING > VISIBLE WAVELENGTHS > SENSOR COUNTS
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
 date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: seiss_space_packet_data
 attributeType:
 descriptor: GOES-R Space Environment In-Situ Suite (SEISS) L0 CCSDS Space
Packets

units:
 scaleFactor:
 offset:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: Space Environment In-Situ Suite (SEISS) front-end processing starts on the spacecraft where space packets are multiplexed placing multiple packets in each transfer frame. Forward error correction (FEC) coding (Low-Density Parity Check - LDPC) occurs and the packets are downlinked. The data is received, forward error correction decode is performed. In the event of an uncorrectable error the transfer frame is discarded. Error-free space packets are then extracted from the transfer frames. SEISS science data arrives at the ground system from the spacecraft in a compressed format. The data is decompressed then packaged for delivery to external interfaces.
 processor: (CI_ResponsibleParty)
 organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 role: (CI_RoleCode) processor
 processor: (CI_ResponsibleParty)
 organisationName: RBU (Remote Backup Unit, Fairmont, WV)
 role: (CI_RoleCode) processor
 output: (LE_Source)
 processedLevel: (MD_Identifier)
 authority: (CI_Citation)
 title: NOAA Processing Levels
 date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
 citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code: GOES-16 SEISS instrument_id (serial number)
type: Space Environment In-Situ Suite
description: The Space Environment In-Situ Suite is comprised of four sensors that will monitor proton, electron, and heavy ion fluxes at geosynchronous orbit. The information provided by SEISS is critical for assessing the electrostatic discharge (ESD) risk and radiation hazard to astronauts and satellites. In addition to hazard assessment, the information from SEISS can be used to warn of high flux events, mitigating any damage to radio communication. The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). Data from SEISS will drive solar radiation storm portion of NOAA space weather scales and other alerts and warnings and will improve energetic particle forecasts.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission
(HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/glm.html
date:
code: GOES-17 SEISS instrument_id (serial number)
type: Space Environment In-Situ Suite
description: The Space Environment In-Situ Suite is comprised of four sensors that will monitor proton, electron, and heavy ion fluxes at geosynchronous orbit. The information provided by SEISS is critical for assessing the electrostatic discharge (ESD) risk and radiation hazard to astronauts and satellites. In addition to hazard assessment, the information from SEISS can be used to warn of high flux events, mitigating any damage to radio communication. The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). Data from SEISS will drive solar radiation storm portion of NOAA space weather scales and other alerts and warnings and will improve energetic particle forecasts.

3.6 Magnetometer Level 0 Product ISO Series Metadata

(fileIdentifier: 389e80c0-a561-11e4-bcd8-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier:
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for MAG L0 Product Collection
contact:
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
Magnetometer (MAG) L0 data is comprised of unprocessed science data packets and telemetry packets. All science data and most telemetry data is sourced by the MAG instrument. L0 data includes select spacecraft telemetry in addition to instrument telemetry.

pointOfContact: (CI_Contact)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
 postalCode: 20910
 country: USA
 electronicMailAddress: goes-r@noaa.gov
 role: (CI_RoleCode) originator
 resourceFormat: (MD_Format)
 name: netCDF
 version: 4
 descriptiveKeywords: (MD_Keywords)
 keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > SENSOR COUNTS
 keyword: SPECTRAL/ENGINEERING > VISIBLE WAVELENGTHS > SENSOR COUNTS
 type: (MD_KeywordTypeCode) theme
 thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
 date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
 edition: Version 7.0.0.0
 citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
 resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
 classification: (MD_ClassificationCode) unclassified
 language: eng; USA
 characterSet: (MD_CharacterSetCode) utf8
 topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
 extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

 contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: mag_space_packet_data
 attributeType:
descriptor: GOES-R Magnetometer (MAG) L0 CCSDS Space Packets

units:

scaleFactor:

offset:

<table>
<thead>
<tr>
<th>dataQualityInfo: (DQ_DataQuality)</th>
<th>scope: (DQ_Scope)</th>
</tr>
</thead>
<tbody>
<tr>
<td>level: (MD_ScopeCode) dataset</td>
<td>report: (DQ_CompletenessOmission)</td>
</tr>
<tr>
<td>nameOfMeasure: percent_uncorrectable_L0_errors</td>
<td>evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.</td>
</tr>
<tr>
<td>result: (DQ_QuantitativeResult)</td>
<td>valueUnit:</td>
</tr>
<tr>
<td>BaseUnit:</td>
<td>identifier: percent</td>
</tr>
<tr>
<td>unitsSystem:</td>
<td>value:</td>
</tr>
<tr>
<td>lineage: (LI_Lineage)</td>
<td>processStep: (LE_ProcessStep)</td>
</tr>
<tr>
<td>description: Magnetometer (MAG) front-end processing starts on the spacecraft where space packets are multiplexed placing multiple packets in each transfer frame. Forward error correction (FEC) coding (Low-Density Parity Check - LDPC) occurs and the packets are downlinked. The data is received, forward error correction decode is performed. In the event of an uncorrectable error the transfer frame is discarded. Error-free space packets are then extracted from the transfer frames. MAG science data arrives at the ground system from the spacecraft in a compressed format. The data is decompressed then packaged for delivery to external interfaces.</td>
<td></td>
</tr>
</tbody>
</table>

processor: (CI_ResponsibleParty)

organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)

role: (CI_RoleCode) processor

processor: (CI_ResponsibleParty)

organisationName: RBU (Remote Backup Unit, Fairmont, WV)

role: (CI_RoleCode) processor

output: (LE_Source)

processedLevel: (MD_Identifier)

authority: (CI_Citation)

title: NOAA Processing Levels

date: (CI_Date)

date: 2013-11

dateType: (CI_DateTypeCode) revision

citedResponsibleParty: (CI_ResponsibleParty)

organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)

contactInfo: (CI_Contact)
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer.

Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/mag.html
date:
code: GOES-16 MAG instrument_id (serial number)
type: Magnetometer
description: The GOES-R Magnetometer provides measurements of the space environment magnetic field that controls charged particle dynamics in the outer region of the magnetosphere. These particles can be dangerous to spacecraft and human spaceflight. The geomagnetic field measurements are important for providing alerts and warnings to many customers, including satellite operators and power utilities. GOES Magnetometer data are also important in research, being among the most widely used spacecraft data by the national and international research community. The GOES-R Magnetometer products are an integral part of the National Oceanic and Atmospheric Administration (NOAA) space weather operations, providing information on the general level of geomagnetic activity and permitting detection of sudden magnetic storms. In addition, measurements will be used to validate large-scale space environment models that are used in operations. The MAG requirements are similar to the tri-axial fluxgates that have previously flown. GOES-R requires measurements of three components of the geomagnetic field with a resolution of 0.016 nT and response frequency of 2.5 Hz.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.
detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/mag.html
date:
code: GOES-17 MAG instrument_id (serial number)
type: Magnetometer
description: The GOES-R Magnetometer provides measurements of the space environment magnetic field that controls charged particle dynamics in the outer region of the magnetosphere. These particles can be dangerous to spacecraft and human spaceflight. The geomagnetic field measurements are important for providing alerts and warnings to many customers, including satellite operators and power utilities. GOES Magnetometer data are also important in research, being among the most widely used spacecraft data by the national and international research community. The GOES-R Magnetometer products are an integral part of the National Oceanic and Atmospheric Administration (NOAA) space weather operations, providing information on the general level of geomagnetic activity and permitting detection of sudden magnetic storms. In addition, measurements will be used to validate large-scale space environment models that are used in operations. The MAG requirements are similar to the tri-axial fluxgates that have previously flown. GOES-R requires measurements of three components of the geomagnetic field with a resolution of 0.016 nT and response frequency of 2.5 Hz.

4.0 LEVEL 1B PRODUCT AND DATA ISO SERIES METADATA

4.1 Level 1b Products

4.1.1 Radiances Product ISO Series Metadata

(MI_Metadata)

fileIdentifier: a70be540-c38b-11e0-962b-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 1b Radiances Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov

role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_ABI-L1b-ISO-SERIES_c20171311123000.xml

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 10848
 resolution: Distance: 1
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 10848
 resolution: Distance: 1
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: Full Disk; ABI Channels 1, 3, 5

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 3000
 resolution: Distance: 1
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 5000
 resolution:
<table>
<thead>
<tr>
<th>Distance: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellGeometry: (MD_CellGeometryCode) area</td>
</tr>
<tr>
<td>transformationParameterAvailability: true</td>
</tr>
<tr>
<td>checkPointAvailability: false</td>
</tr>
<tr>
<td>pointInPixel: (MD_PixelOrientationCode) upperLeft</td>
</tr>
<tr>
<td>transformationDimensionDescription: CONUS; ABI Channels 1, 3, 5</td>
</tr>
</tbody>
</table>

| spatialRepresentationInfo: (MD_Georectified) |
| numberOfDimensions: 2 |
| axisDimensionProperties: (MD_Dimension) |
| dimensionName: (MD_DimensionNameTypeCode) row |
| dimensionSize: 1000 |
| resolution: |
| Distance: 1 |
| axisDimensionProperties: (MD_Dimension) |
| dimensionName: (MD_DimensionNameTypeCode) column |
| dimensionSize: 1000 |
| resolution: |
| Distance: 1 |
| cellGeometry: (MD_CellGeometryCode) area |
| transformationParameterAvailability: true |
| checkPointAvailability: false |
| pointInPixel: (MD_PixelOrientationCode) upperLeft |
| transformationDimensionDescription: Mesoscale; ABI Channels 1, 3, 5 |

| spatialRepresentationInfo: (MD_Georectified) |
| numberOfDimensions: 2 |
| axisDimensionProperties: (MD_Dimension) |
| dimensionName: (MD_DimensionNameTypeCode) row |
| dimensionSize: 21696 |
| resolution: |
| Distance: 0.5 |
| axisDimensionProperties: (MD_Dimension) |
| dimensionName: (MD_DimensionNameTypeCode) column |
| dimensionSize: 21696 |
| resolution: |
| Distance: 0.5 |
| cellGeometry: (MD_CellGeometryCode) area |
| transformationParameterAvailability: true |
| checkPointAvailability: false |
| pointInPixel: (MD_PixelOrientationCode) upperLeft |
| transformationDimensionDescription: Full Disk; ABI Channel 2 |

| spatialRepresentationInfo: (MD_Georectified) |
| numberOfDimensions: 2 |
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 6000
 resolution: Distance: 0.5
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 10000
 resolution: Distance: 0.5
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS; ABI Channel 2

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 2000
 resolution: Distance: 0.5
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2000
 resolution: Distance: 0.5
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale; ABI Channel 2

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 5424
 resolution: Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 5424
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkpointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk; ABI Channels 4 and 6 - 16

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1500
 resolution: Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2500
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkpointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS; ABI Channels 4 and 6 - 16

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 500
 resolution: Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkpointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale; ABI Channels 4 and 6 - 16

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

identificationInfo: (MD_DataIdentification)

title: GOES-R ABI Level 1b Radiances Product

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C01

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C02

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C03

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C04

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C05

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C06

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C07

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C08

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C09

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C10

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C11

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C12

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C13

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C14

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C15

alternateTitle: Data short name (DSN): ABI-L1b-RadM1-M3C16

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C01

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C02

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C03

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C04

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C05

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C06

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C07

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C08

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C09

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C10

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C11

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C12

alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C13
alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C14
alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C15
alternateTitle: Data short name (DSN): ABI-L1b-RadM2-M3C16
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C01
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C02
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C03
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C04
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C05
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C06
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C07
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C08
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C09
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C10
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C11
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C12
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C13
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C14
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C15
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M3C16
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C01
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C02
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C03
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C04
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C05
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C06
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C07
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C08
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C09
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C10
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C11
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C12
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C13
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C14
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C15
alternateTitle: Data short name (DSN): ABI-L1b-RadC-M4C16
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C01
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C02
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C03
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C04
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C05
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C06
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C07
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C08
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C09
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C10
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C11
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C12
alternateTitle: Data short name (DSN): ABI-L1b-RadF-M3C13
The ABI instrument samples the radiance of the Earth in sixteen spectral bands using several arrays of detectors in the instrument’s focal plane. Single reflective band ABI L1b Radiance Products (channels 1 - 6 with wavelengths 0.47, 0.64, 0.87, 1.38, 1.61, 2.25 microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere for visible and near-IR bands. Single emissive band ABI L1b Radiance Products (channels 7 - 16 with wavelengths 3.89, 6.17, 6.93, 7.34, 8.44, 9.61, 10.33, 11.19, 12.27, 13.27 microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere for IR bands. Detector
samples are compressed, packetized and down-linked to the ground station as Level 0 data for conversion to calibrated, geo-located pixels (Level 1b Radiance data). The detector samples are decompressed, radiometrically corrected, navigated and resampled onto an invariant output grid, referred to as the ABI fixed grid.

pointOfContact: (CI_ResponsibleParty)

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator

resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: SPECTRAL/ENGINEERING > VISIBLE WAVELENGTHS > VISIBLE RADIANCE
keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > INFRARED RADIANCE
type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: toa_outgoing_radiance_per_unit_wavelength
keyword: toa_outgoing_radiance_per_unit_wavenumber
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
use limitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
 distance:
 Distance: .5
spatialResolution: (MD_Resolution)
 distance:
 Distance: 1
spatialResolution: (MD_Resolution)
 distance:
 Distance: 2
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Mesoscale

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: Rad
 attributeType:
 descriptor: ABI L1b Radiances per pixel (channels 1 - 6)
 units:
 DerivedUnit:
 identifier: mW m-2 sr-1 um-1
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: Rad
 attributeType:
 descriptor: ABI L1b Radiances per pixel (channels 7 - 16)
 units:
 DerivedUnit:
 identifier: mW m-2 sr-1 (cm-1)-1
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
derivationUnitTerm:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 1b Radiances data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Statistics are provided for minimum, maximum, mean and standard deviation radiance value of valid pixels; counts of: missing pixels samples, pixels that exceed saturation limit, pixels below undersaturation limit, and pixels with each data quality flag value in the product image; and percent of uncorrectable L0 errors.
 result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: Raw data downlink is received by the Antenna system which processes the data through signal processing equipment to Intermediate Frequency. Forward error correction is performed. If FEC fails, those packets are dropped. Good packets are input to L0 processing. In L0 processing packets are uncompressed, extracted and byte-aligned (L1a). L1b processing extracts the L1a data, performs radiometric and geometric correction on the data to create L1b data.
 processor: (CI_ResponsibleParty)
 organisationName: NESDIS/OSPO at WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
role: (CI_RoleCode) processor

processor: (CI_Contact)
organisationName: NESDIS/OSPO at RBU (Remote Backup Unit, Fairmont, WV)
role: (CI_RoleCode) processor
output: (LE_Source)
description: Advanced Baseline Imager (ABI) L1b data is a pixel array of resampled, radiometrically corrected, Earth located imagery with associated per-pixel quality flag array. End-products are unique to an ABI scene (Full Disk, CONUS or Mesoscale) and ABI channel (1 - 16).

processedLevel: (MD_Identifier)

authority: (CI_Citation)
title: NOAA Processing Levels
date: (CI_Date)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)

onlineResource: (CI_OnlineResource)

role: (CI_RoleCode) publisher
code: L1b

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)

operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of
Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://science.nasa.gov/missions/goes-r/

date:

code:

status: (MD_ProgressCode) onGoing

parentOperation:

platform: (MI_Platform)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov

date:

code: GOES-East (G16)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov/spacesegment/abi.html

date:

code: GOES-16 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3
concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
4.1.2 Level 1b SUVI Solar Imagery: Extreme Ultraviolet Product ISO Series Metadata

{MI_Metadata}

fileIdentifier: f5816f57-fd6d-11e3-a3ac-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for Level 1b SUVI Solar Imagery: Extreme Ultraviolet Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_SUVI-L1b-SUVI-ISO-SERIES_c20171311126000.xml

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: GOES-R Level 1b SUVI Solar Imagery: Extreme Ultraviolet Product ISO Series Metadata
alternateTitle: Data short name (DSN): SUVI-L1b-Fe093
alternateTitle: Data short name (DSN): SUVI-L1b-Fe131
alternateTitle: Data short name (DSN): SUVI-L1b-Fe171
alternateTitle: Data short name (DSN): SUVI-L1b-Fe195
alternateTitle: Data short name (DSN): SUVI-L1b-Fe284
alternateTitle: Data short name (DSN): SUVI-L1b-He303
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
The Solar Ultraviolet Imager (SUVI) Level 1b Solar Imagery: X-Ray product contains an image of the Sun at one of six wavelengths with different exposure times, and metadata required for exploitation and higher level processing. This product also contains an array containing a quality flag for each pixel in the solar image.

abstract: The Solar Ultraviolet Imager (SUVI) Level 1b Solar Imagery: X-Ray product contains an image of the Sun at one of six wavelengths with different exposure times, and metadata required for exploitation and higher level processing. This product also contains an array containing a quality flag for each pixel in the solar image.

pointOfContact: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor

city: Silver Spring

administrativeArea: MD

postalCode: 20910

country: USA

electronicMailAddress: goes-r@noaa.gov

role: (CI_RoleCode) originator

resourceFormat: (MD_Format)

name: netCDF

version: 4

resourceFormat: (MD_Format)

name: FITS

version: 3.0

descriptiveKeywords: (MD_Keywords)

keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > SOLAR IMAGERY

keyword: ATMOSPHERE > ATMOSPHERIC RADIATION > SOLAR RADIATION

keyword: SPECTRAL/ENGINEERING > ULTRAVIOLET WAVELENGTHS > ULTRAVIOLET RADIANCE

keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > CORONA

keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > CORONA HOLES

keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > CORONAL MASS EJECTIONS

keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > SOLAR ACTIVE REGIONS
keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > SOLAR FLARES
keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > SOLAR PROMINENCES/SOLAR FILAMENTS
keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > SOLAR ULTRAVIOLET EMISSIONS
keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > SUN SPOTS
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) geoscientificInformation
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
TimePeriod:
beginPosition: 2017-05-11
endPosition: now

ccontentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
cContentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: RAD
attributeType:
descriptor: Level 1b SUVI Solar Imagery: Extreme Ultraviolet data
units:
DerivedUnit:
identifier: W m-2 sr-1
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:

contentInfo: (MI_CoverageDescription)

attributeDescription:

RecordType: variable

contentType: (MD_CoverageContentTypeCode) thematicClassification

dimension: (MD_Band)

sequenceIdentifier:

MemberName:

aName: DQF

attributeType:

descriptor: Level 1b SUVI Solar Imagery: Extreme Ultraviolet data quality flags

units:

dataQualityInfo: (DQ_DataQuality)

scope: (DQ_Scope)

level: (MD_ScopeCode) dataset

report: (DQ_CompletenessOmission)

nameOfMeasure: percent_uncorrectable_L0_errors

evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.

result: (DQ_QuantitativeResult)

valueUnit:

BaseUnit:

identifier: percent

unitsSystem:

value:

lineage: (LI_Lineage)

processStep: (LE_ProcessStep)

description: SUVI is a solar imager capable of operation in the soft EUV to EUV wavelength range. It provides full-disk solar images at high cadence around the clock, except for brief periods during satellite eclipse. The operational goals of the SUVI are to image the solar emissions and temperatures within the EUV spectrum, to locate coronal holes for the forecasting of recurring geomagnetic activity, to locate solar flares for the forecasting of energetic particle events, to assess active region complexity for solar flare forecasting, and to determine the signatures of Coronal Mass Ejections (CME). The ground processing algorithm applies several correction and calibration processes in order to generate the photon fluxes for the final L1b product.

processor: (CI_ResponsibleParty)

organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)

role: (CI_RoleCode) processor

processor: (CI_ResponsibleParty)

organisationName: RBU (Remote Backup Unit, Fairmont, WV)
role: (CI_RoleCode) processor

output: (LE_Source)

description: The Solar Ultraviolet Imager (SUVI) Level 1b Solar Imagery: X-Ray product contains an image of the Sun at one of six wavelengths with different exposure times, and metadata required for exploitation and higher level processing. This product also contains an array containing a quality flag for each pixel in the solar image.

processedLevel: (MD_Identifier)

authority: (CI_Citation)

title: NOAA Processing Levels

date: (CI_Dater)

date: 2013-11

dateType: (CI_DateTypeCode) revision

citedResponsibleParty: (CI_ResponsibleParty)

organisationName: National Oceanographic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)

contactInfo: (CI_Contact)

onlineResource: (CI_OnlineResource)

linkage: https://www.ngdc.noaa.gov/wiki/index.php?title=NOAA_Processing_Levels

role: (CI_RoleCode) publisher

code: L1b

metadataMaintenance: (MD_MaintenanceInformation)

maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded

maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)

operation: (MI_Operation)

description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit
The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/suvi.html
date:
code: GOES-16 SUVI instrument_id (serial number)
type: Solar Ultraviolet Imager - SUVI
description: The GOES-R Solar Ultraviolet Imager is a telescope that monitors the Sun in the extreme ultraviolet wavelength range. The SUVI observes full disk solar images around the clock.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from
The GOES-R System observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/suvi.html
date:
code: GOES-17 SUVI instrument_id (serial number)
type: Solar Ultraviolet Imager - SUVI
description: The GOES-R Solar Ultraviolet Imager is a telescope that monitors the Sun in the extreme ultraviolet wavelength range. The SUVI observes full disk solar images around the clock.
4.1.3 Solar Flux: Extreme Ultraviolet Product ISO Series Metadata

(fileIdentifier: f7087580-e5a8-11e3-ac10-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for EXIS Level 1b Solar Flux: Extreme Ultraviolet Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_EXIS-L1b-SFEU-ISO-SERIES_c20171311123000.xml

citation: (CI_Citation)
title: EXIS Level 1b Solar Flux: Extreme Ultraviolet Product ISO Series Metadata
alternateTitle: Data short name (DSN): EXIS-L1b-SFEU
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: EXIS-L1b-SFEU
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
abstract: The Extreme Ultraviolet (EUV) solar flux product consists of a solar irradiance spectrum covering the wavelength range from 5 nm to 127 nm. The Extreme Ultraviolet Sensor and X-ray Irradiance Sensors (EXIS) instrument does not directly measure the entire spectrum over this wavelength range. Instead, the ground processing algorithm computes the solar spectrum using a proxy model based on the set of measurements obtained from the XRS-A channel (0.05-0.4 nm), the XRS-B channel (0.1-0.8 nm) and the three channels from the EUV sensor. The ground processing algorithm will produce this spectrum with a spectral resolution of 5 nm over the entire wavelength range with one 10 nm exception being the 117 - 127 nm wavelength bin.

role: (CI_RoleCode) author
resourcConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) geoscientificInformation
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
TimePeriod:
beginPosition: 2017-05-11
endPosition: now

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: irradianceSpectrum
attributeType:
descriptor: irradiance spectrum for wavelengths between 5 and 127 nm calculated using a proxy model based on inputs from XRS A and B channels, and EUVS A, B, and C channels
units:
DerivedUnit:
identifier: W m-2 nm-1
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) dataset
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The ground processing algorithm (GPA) converts the raw data from all of the photodiodes for both XRS channels from digital numbers into electrical current using the integration time and the total diode gain factor, composed of the pre-flight temperature calibration value, the in-flight temporal calibration factor, and the gain linearity factor. The GPA calculates and removes the dark diode current, caused by the radiation background, the thermal contribution from the diode material and the temperature-dependent electrical offset from the measured current. The GPA sums the four currents for the solar maximum quadrant diode set. The GPA converts the solar minimum and the solar maximum currents to irradiance values using the instrument responsivity and the field-of-view correction generated from the EXIS Solar Position Sensor (SPS) pointing data and determines the primary irradiance for each channel based on a calibration threshold value. The GPA computes the 1-AU correction factor to the X-Ray fluxes to support the generation of higher-level products at a later time. The GPA also has a requirement to calculate the XRS ratio, XRS-A and XRS-B primary irradiances for use in the EUV solar flux end product processing.

processor: (CI_ResponsibleParty)
organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
role: (CI_RoleCode) processor

processor: (CI_ResponsibleParty)
organisationName: RBU (Remote Backup Unit, Fairmont, WV)
role: (CI_RoleCode) processor

output: (LE_Source)
description: The Extreme Ultraviolet (EUV) solar flux product consists of a solar irradiance spectrum covering the wavelength range from 5 nm to 127 nm. The Extreme Ultraviolet Sensor and X-ray Irradiance Sensors (EXIS) instrument does not directly measure the entire spectrum over this wavelength range. Instead, the ground processing algorithm computes the solar spectrum using a proxy model based on the set of measurements obtained from the XRS-A channel (0.05-0.4 nm), the XRS-B channel (0.1-0.8 nm) and the three channels from the EUV sensor. The ground processing algorithm will produce this spectrum with a spectral resolution of 5 nm over the entire wavelength range.

processedLevel: (MD_Identifier)
authority: (CI_Citation)
title: NOAA Processing Levels
date: (CI_Date)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
onlineResource: (CI_OnlineResource)
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/exis.html
date:
code: GOES-16 EXIS serial number
type: Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS)
description: The EXIS contains two primary sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the Sun. EXIS will reside on the Sun Pointing Platform mounted in the yoke of the solar array. The instrument also includes the Sun Positioning Sensor (SPS).

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/xis.html
date: 08 March 2019

GOES-17 EXIS serial number

Type: Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS)

Description: The EXIS contains two primary sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the Sun. EXIS will reside on the Sun Pointing Platform mounted in the yoke of the solar array. The instrument also includes the Sun Positioning Sensor (SPS).

4.1.4 Solar Flux: X-Ray Product ISO Series Metadata

```
(MI_Metadata)
  fileIdentifier: f7087581-e5a8-11e3-ac10-0800200c9a66
  language: eng
  characterSet: (MD_CharacterSetCode) utf8
  parentIdentifier: n/a
  hierarchyLevel: (MD_ScopeCode) series
  hierarchyLevelName: ISO Series Metadata for EXIS Level 1b Solar Flux: X-Ray Product Collection

  contact: (CI_ResponsibleParty)
    organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
    contactInfo: (CI_Contact)
      address: (CI_Address)
        deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
        city: Silver Spring
        administrativeArea: MD
        postalCode: 20910
        country: USA
        electronicMailAddress: GOES-R@noaa.gov
    role: (CI_RoleCode) originator
  dateStamp: 2017-05-11
  metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
  dataSetURI: OR_EXIS-L1b-SFXR-ISO-SERIES_c20171311124000.xml
```

IdentificationInfo: (MD_DataIdentification)

Citation: (CI_Citation)

- **Title:** EXIS Level 1b Solar Flux: X-Ray Product ISO Series Metadata
- **AlternateTitle:** Data short name (DSN): EXIS-L1b-SFXR
- **Date:** (CI_Date)
 - **Date:** 2017-05-11
 - **DateType:** (CI_DateTypeCode) creation
- **Identifier:** (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: EXIS-L1b-SFXR
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The solar flux X-Ray product consists of two irradiance measurements within the X-Ray spectrum of the Sun. The algorithm generates this product using XRS measurements of the solar flux in two channels: XRS-A covering 0.05-0.4 nm and XRS-B covering 0.1-0.8 nm. In order to span the full dynamic range of the X-Ray radiation over the approximate 11-year solar cycle, each channel of the XRS uses both a solar minimum photodiode and a solar maximum quadrant photodiode set. The solar minimum diode performs well during periods of low solar activity, but can saturate during high solar activity. The set of quadrant photodiodes provides good coverage of the X-Ray solar flux during high activity and flares, but may bottom-out during low activity. In addition, the individual signals in the quadrant provide a means for estimating the location of flares on the solar disk. The product data will contain a flag to indicate whether the solar minimum or solar maximum photodiodes correspond to the primary irradiance measurement for each channel. The X-Ray solar flux product also includes a set of quality flags to assess the state and health of the instrument, product metadata indicating the measurement details and quality of the product data, and intermediate data required for the generation of higher-level products.
pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
 keyword: SPECTRAL/ENGINEERING > X-RAY > X-RAY FLUX
 keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > SOLAR IRRADIANCE
 keyword: SUN-EARTH INTERACTIONS > SOLAR ACTIVITY > SOLAR X-RAY EMISSIONS
 keyword: SUN-EARTH INTERACTIONS > SOLAR ENERGETIC PARTICLE FLUX > X-RAY FLUX
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0

citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
 classification: (MD_ClassificationCode) unclassified
language: eng
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) geoscientificInformation
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: irradiance_xrsa1
 attributeType:
 descriptor: irradiance at wavelengths between 0.05 and 0.4 nm calculated from XRS-A solar minimum channel (photodiode)
 units:
DerivedUnit:
identifier: W m-2
derivationUnitTerm:
derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: irradiance_xrsa2
attributeType:
descriptor: irradiance at wavelengths between 0.05 and 0.4 nm calculated from XRS-A solar maximum channel (quadrant photodiode)
units:
DerivedUnit:
identifier: W m-2
derivationUnitTerm:
derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: irradiance_xrsb1
attributeType:
descriptor: irradiance at wavelengths between 0.1 and 0.8 nm calculated from XRS-B solar minimum channel (photodiode)
units:
DerivedUnit:
identifier: W m-2
derivationUnitTerm:
derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: irradiance_xrsb2
attributeType:
descriptor: irradiance at wavelengths between 0.1 and 0.8 nm calculated from XRS-B solar maximum channel (quadrant photodiode)
units:
DerivedUnit:
identifier: W m-2
derivationUnitTerm:
derivationUnitTerm:
dataQualityInfo: (DQ_DataQuality)
scope: (DQ.Scope)
level: (MD_ScopeCode) dataset
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit: BaseUnit:
 identifier: percent
unitsSystem: value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The ground processing algorithm (GPA) converts the raw data from all of the photodiodes for both XRS channels from digital numbers into electrical current using the integration time and the total diode gain factor, composed of the pre-flight temperature calibration value, the in-flight temporal calibration factor, and the gain linearity factor. The GPA calculates and removes the dark diode current, caused by the radiation background, the thermal contribution from the diode material and the temperature-dependent electrical offset from the measured current. The GPA sums the four currents for the solar maximum quadrant diode set. The GPA converts the solar minimum and the solar maximum currents to irradiance values using the instrument responsivity and the field-of-view correction generated from the EXIS Solar Position Sensor (SPS) pointing data and determines the primary irradiance for each channel based on a calibration threshold value. The GPA computes the 1-AU correction factor to the X-Ray fluxes to support the generation of higher-level products at a later time. The GPA also has a requirement to calculate the XRS ratio, XRS-A and XRS-B primary irradiances for use in the EUV solar flux end product processing.
processor: (CI_ResponsibleParty)
 organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 role: (CI_RoleCode) processor
processor: (CI_ResponsibleParty)
 organisationName: RBU (Remote Backup Unit, Fairmont, WV)
 role: (CI_RoleCode) processor
output: (LE_Source)
description: The solar flux X-Ray product consists of two irradiance measurements within the X-Ray spectrum of the Sun. The algorithm generates this product using XRS measurements of the solar flux in two channels: XRS-A covering 0.05-0.4 nm and XRS-B covering 0.1-0.8 nm. In order to span the full dynamic range of the X-Ray radiation over the approximate 11-year solar cycle, each channel of the XRS uses both a solar minimum photodiode and a solar maximum quadrant photodiode set. The solar minimum diode performs well during periods of low solar activity, but can saturate during high solar activity. The set of quadrant photodiodes provides good coverage of the X-Ray solar flux during high activity and flares, but may bottom-out during low activity. In addition, the individual signals in the quadrant provide a means for estimating the location of flares on the solar disk. The product data will contain a flag to indicate whether the solar minimum or solar maximum photodiodes correspond to the primary irradiance measurement for each channel. The X-Ray solar flux product also includes a set of quality flags to assess the state and health of the instrument, product metadata indicating the measurement details and quality of the product data, and intermediate data required for the...
generation of higher-level products.

- **processedLevel**: (MD_Identifier)
- **authority**: (CI_Citation)
- **title**: NOAA Processing Levels
- **date**: (CI_Date)
 - **date**: 2013-11
 - **dateType**: (CI_DateTypeCode) revision
- **citedResponsibleParty**: (CI_ResponsibleParty)
 - **organisationName**: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
- **contactInfo**: (CI_Contact)
- **onlineResource**: (CI_OnlineResource)
- **role**: (CI_RoleCode) publisher
- **code**: L1b

metadataMaintenance: (MD_MaintenanceInformation)
- **maintenanceAndUpdateFrequency**: (MD_MaintenanceFrequencyCode) asNeeded
- **maintenanceNote**: GOES-R ISO Series metadata contain quasi-static general information about a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
- **operation**: (MI_Operation)
- **description**: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
- **identifier**: (MD_Identifier)
- **authority**: (CI_Citation)
- **title**: http://science.nasa.gov/missions/goes-r/
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

The EXIS contains two primary sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the Sun. EXIS will reside on the Sun Pointing Platform mounted in the yoke of the solar array. The instrument also includes the Sun Positioning Sensor (SPS).
XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/exis.html
date:
code: GOES-17 EXIS serial number
type: Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS)
description: The EXIS contains two primary sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the Sun. EXIS will reside on the Sun Pointing Platform mounted in the yoke of the solar array. The instrument also includes the Sun Positioning Sensor (SPS).

4.1.5 Energetic Heavy Ions Product ISO Series Metadata

(MI_Metadata)
fileIdentifier: f7087582-e5a8-11e3-ac10-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for SEISS Level 1b Energetic Heavy Ions Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_SEIS-L1b-EHIS-ISO-SERIES_c20171311124000.xml

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: GOES-R SEISS Level 1b Energetic Heavy Ions Product ISO Series Metadata
alternateTitle: Data short name (DSN): SEIS-L1b-EHIS
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: SEIS-L1b-EHIS
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator

abstract: The GOES-R L1b Energetic Heavy Ions Product consists of heavy ion differential fluxes derived from in situ measurements of heavy ion count rates. Differential fluxes are produced for Hydrogen (H), Helium (He), Carbon-Nitrogen-Oxygen (CNO) mass group, Neon-Sulfur (Ne-S) mass group, Chlorine-Nickel (Cl-Ni) mass group, and Beryllium to Copper (Be-Cu) 26 elements group. For each mass and element group, the fluxes are produced for five energy bands, and one angular zone. The 5 energy bands are evenly spaced logarithmically spanning from 10 to 200 MeV/nucleon for H and He. The energy range for ions heavier than He is species-dependent and normalized such that, when focused into a beam and directed into a block of silicon, it corresponds to the same stopping range as He. The one angular zone has a central, anti-earthward look-angle (-Z direction in spacecraft body-reference-frame coordinates), and a 60 degree field-of-view. The product also contains processing and data quality metadata, satellite state and location information, and data required for the generation of level 2 products.
pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contentInfo: (MI_CoverageDescription)

attributeDescription:
- **RecordType:** variable
- **contentType:** (MD_CoverageContentTypeCode) physicalMeasurement
- **dimension:** (MD_Band)

sequenceIdentifier:
- **MemberName:**
 - **aName:** H5MinuteDifferentialFluxes
 - **attributeType:**
 - **descriptor:** Hydrogen (H) differential flux for each energy band
 - **units:** DerivedUnit:
 - **identifier:** cm-2 sr-1 s-1 (MeV nuc-1)-1
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**

dimension: (MD_Band)

sequenceIdentifier:
- **MemberName:**
 - **aName:** He5MinuteDifferentialFluxes
 - **attributeType:**
 - **descriptor:** Helium (He) differential flux for each energy band
 - **units:** DerivedUnit:
 - **identifier:** cm-2 sr-1 s-1 (MeV nuc-1)-1
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**

dimension: (MD_Band)

sequenceIdentifier:
- **MemberName:**
 - **aName:** CNO5MinuteDifferentialFluxes
 - **attributeType:**
 - **descriptor:** Carbon-Nitrogen-Oxygen (CNO) mass group differential flux for each energy band
 - **units:** DerivedUnit:
 - **identifier:** cm-2 sr-1 s-1 (MeV nuc-1)-1
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: NeS5MinuteDifferentialFluxes
attributeType:
descriptor: Neon-Sulfur (Ne-S) mass group differential flux for each energy band
units:
DerivedUnit:
identifier: cm^{-2} sr^{-1} s^{-1} (MeV nuc^{-1})^{-1}
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: ClNi5MinuteDifferentialFluxes
attributeType:
descriptor: Chlorine-Nickel (Cl-Ni) mass group differential flux for each energy band
units:
DerivedUnit:
identifier: cm^{-2} sr^{-1} s^{-1} (MeV nuc^{-1})^{-1}
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: BeCu5MinuteDifferentialFluxes
attributeType:
descriptor: Beryllium to Copper (Be-Cu) differential flux for each element’s energy bands
units:
DerivedUnit:
identifier: cm^{-2} sr^{-1} s^{-1} (MeV nuc^{-1})^{-1}
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:

dataQualityInfo: (DQ_DataQuality)

scope: (DQ_Scope)

level: (MD_ScopeCode) dataset

report: (DQ_CompletenessOmission)

nameOfMeasure: percent_uncorrectable_L0_errors

evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.

result: (DQ_QuantitativeResult)

valueUnit:

BaseUnit:

identifier: percent

unitsSystem:

value:

lineage: (LI_Lineage)

processStep: (LE_ProcessStep)

description: SEISS EHIS L1b Calibration Algorithm (SECA) uses the EHIS data to produce heavy ion differential fluxes in the energy range from 10 to 200 MeV/nucleon. Differential fluxes are produced for Hydrogen (H), Helium (He), the C-N-O group, the Ne-S group and the Fe group. For each mass group, the fluxes are produced for five energy bands, and one angular zone. The 5 energy bands are evenly spaced logarithmically and range from 10 to 200 MeV/nuc (for H and He). The energy range for ions heavier than He is species-dependent and corresponds to the same stopping range (in Si) as He. The one angular zone has a central look-angle which is anti-earthward (-Z direction), and has a 60 degree field-of-view.

processor: (CI_ResponsibleParty)

organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)

role: (CI_RoleCode) processor

processor: (CI_ResponsibleParty)

organisationName: RBU (Remote Backup Unit, Fairmont, WV)

role: (CI_RoleCode) processor

output: (LE_Source)

description: The GOES-R Energetic Heavy Ions L1b Space and Solar End-Product consists of fluxes of heavy ions derived from in situ measurements of heavy ion count rates. These measurements are retrieved from the Energetic Heavy Ion Sensor (EHIS) which is one of the 5 scientific sensor units comprising the GOES-R Space Environment In Situ Suite (SEISS) to produce heavy ion differential fluxes in the energy range from 10 to 200 MeV/nucleon. Differential fluxes are produced for Hydrogen (H), Helium (He), the C-N-O group, the Ne-S group and the Fe group. For each mass group, the fluxes are produced for five energy bands, and one angular zone. The 5 energy bands are evenly spaced logarithmically and range from 10 to 200 MeV/nuc (for H and He). The energy range for ions heavier than He is species-dependent and corresponds to the same stopping range (in Si) as He. The one angular zone has a central look-angle which is anti-earthward (-Z direction), and has a 60 degree field-of-view.
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.
process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

 instrument: (MI_Instrument)
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: http://www.goes-r.gov/spacesegment/seiss.html
 date: n/a
 code: GOES-17 SEISS EHIS serial number
 type: SEISS Energetic Heavy Ion Sensor (EHIS)
 description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

4.1.6 Magnetospheric Electrons and Protons: Low Energy Product ISO Series Metadata

 fileIdentifier: f7087583-e5a8-11e3-ac10-0800200c9a66
 language: eng
 characterSet: (MD_CharacterSetCode) utf8
 parentIdentifier: n/a
 hierarchyLevel: (MD_ScopeCode) series
 hierarchyLevelName: ISO Series Metadata for SEISS Level 1b Magnetospheric Electrons and Protons: Low Energy Product Collection
 contact: (CI_Contact)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
The GOES-R Low Energy Magnetospheric Electrons and Protons L1b Space and Solar End-Product consists of fluxes of relatively low energy electrons and ions derived from in situ measurements of electron and ion count rates. These measurements are retrieved from the Magnetospheric Particle Sensor Low (MPS-LO) sensor which is one of the 5 scientific sensor units comprising the GOES-R Space Environment In Situ Suite (SEISS). The MPS-LO fluxes are reported for two species (electrons and ions), 15 energy bands and 14 angular zones.
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
 keyword: SUN-EARTH INTERACTIONS > IONOSPHERE/MAGNETOSPHERE DYNAMICS
 > ELECTRIC FIELDS/ELECTRIC CURRENTS
 keyword: SUN-EARTH INTERACTIONS > IONOSPHERE/MAGNETOSPHERE DYNAMICS
 > ION CHEMISTRY/IONIZATION
 keyword: SUN-EARTH INTERACTIONS > IONOSPHERE/MAGNETOSPHERE DYNAMICS
 > SOLAR WIND
 keyword: SUN-EARTH INTERACTIONS > SOLAR ENERGETIC PARTICLE FLUX > ELECTRON FLUX
 keyword: SUN-EARTH INTERACTIONS > SOLAR ENERGETIC PARTICLE FLUX > ION FLUX
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) geoscientificInformation
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: DiffElectronFluxes
 attributeType:
 descriptor: differential electron flux at specific energy bands for each zone’s primary electron data channels
units:
DerivedUnit:
 identifier: cm\(^{-2}\) sr\(^{-1}\) s\(^{-1}\) keV\(^{-1}\)
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:

dimension: (MD_Band)

sequenceIdentifier:
 MemberName:
 aName: DiffIonFluxes
 attributeType:
 descriptor: differential ion flux at specific energy bands for each zone’s primary ion data channels
units:
DerivedUnit:
 identifier: cm\(^{-2}\) sr\(^{-1}\) s\(^{-1}\) keV\(^{-1}\)
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: The SEISS MPS-LO L1b Calibration Algorithm (SMLCA) produces the MPS-LO electron and ion fluxes. The MPS-LO raw count rates are first corrected for the dead-time effect using a simple formula. For the out-of-band contamination correction, MPS-LO employs two shielded background channels. Only high-energy particles can penetrate the shielding and be counted in these background channels. These high-energy particles are assumed to also be contaminating the open-aperture channels. Counts from the background channels are first scaled by background removal coefficients, and then subtracted from the dead-time-corrected, open-aperture channel count rates to remove contamination. Finally, the dead-time corrected, and contamination-free count rates are normalized by the geometrical factor and energy band pass value to obtain directional-differential fluxes.
 processor: (CI_ResponsibleParty)
 organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
role: (CI_RoleCode) processor
processor: (CI_ResponsibleParty)
organisationName: RBU (Remote Backup Unit, Fairmont, WV)
role: (CI_RoleCode) processor
output: (LE_Source)
description: The GOES-R Low Energy Magnetospheric Electrons and Protons L1b Space and Solar End-Product consists of fluxes of relatively low energy electrons and ions derived from in situ measurements of electron and ion count rates. These measurements are retrieved from the Magnetospheric Particle Sensor Low (MPS-LO) sensor which is one of the 5 scientific sensor units comprising the GOES-R Space Environment In Situ Suite (SEISS). The MPS-LO fluxes are reported for two species (electrons and ions), 15 energy bands and 14 angular zones.

processedLevel: (MD_Identifier)
authority: (CI_Citation)
title: NOAA Processing Levels
date: (CI_Date)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
onlineResource: (CI_OnlineResource)
role: (CI_RoleCode) publisher
code: L1b

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.
Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

4.1.7 Magnetospheric Electrons and Protons: Medium and High Energy Product ISO Series Metadata

(MI_Metadata)
fileIdentifier: f7087584-e5a8-11e3-ac10-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for SEISS Level 1b Magnetospheric Electrons and Protons: Medium and High Energy Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
The GOES-R Magnetospheric Electrons and Protons: Medium and High Energy Product consists of fluxes of medium and high energy electrons and protons derived from in situ measurements of electron and proton count rates. Differential and integral electron fluxes are reported at eleven energy bands in five angular zones. Ten of the energy bands are evenly spaced logarithmically spanning from 50 keV to 4 MeV with differential electron flux being reported. The eleventh energy band collects electrons with energies greater than 2 MeV with electron integral flux being reported. In addition,
differential proton fluxes are reported at eleven energy bands in the same five angular zones. The eleven proton energy bands are evenly spaced logarithmically and range from 80 keV to 12 MeV. Collectively, the five angular zones, each with a 30 degree field-of-view, span a total angular range of 170 degrees in the Y-Z arranged north to south with the central zone having an anti-earthward look-angle and are parallel to the minus Z-axis (in spacecraft body-reference-frame coordinates). With respect to the earth, the zones are arranged from north to south with the central zone pointing anti-earthward. In addition, the product contains ionizing radiation doses in two energy ranges, 50 keV to 1 MeV and 1 MeV to 10 MeV, obtained from a pair of Low and High Linear Energy Transfer dosimeters, respectively. The product also contains processing and data quality metadata, satellite state and location information, and data required for the generation of level 2 products.

pointOfContact: (CI_ResponsibleParty)

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

address: (CI_Address)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor

city: Silver Spring

administrativeArea: MD

postalCode: 20910

country: USA

electronicMailAddress: goes-r@noaa.gov

role: (CI_RoleCode) originator

resourceFormat: (MD_Format)

name: netCDF

version: 4

descriptiveKeywords: (MD_Keywords)

keyword: SUN-EARTH INTERACTIONS > IONOSPHERE/MAGNETOSPHERE DYNAMICS > ELECTRIC FIELDS/ELECTRIC CURRENTS

keyword: SUN-EARTH INTERACTIONS > SOLAR ENERGETIC PARTICLE FLUX > ELECTRON FLUX

keyword: SUN-EARTH INTERACTIONS > SOLAR ENERGETIC PARTICLE FLUX > PROTON FLUX

keyword: SUN-EARTH INTERACTIONS > SOLAR ENERGETIC PARTICLE PROPERTIES > ENERGY DEPOSITION

type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)

title: NASA Global Change Master Directory (GCMD) Earth Science Keywords

date: (CI_Date)

date: 2012-10
sequenceIdentifier:
- **MemberName:**
 - **aName:** DiffElectronFluxes
 - **attributeType:** descriptor
 - **descriptor:** differential electron flux at specific energy bands for each telescope’s ten primary data channels

units:
- **DerivedUnit:**
 - **identifier:** cm⁻² sr⁻¹ s⁻¹ keV⁻¹
- **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **dimension:** (MD_Band)

sequenceIdentifier:
- **MemberName:**
aName: IntgElectronFluxes
attributeType:
descriptor: integral electron flux at energy band > 2000 keV for each telescope’s primary data channel E11
units:
 DerivedUnit:
 identifier: cm-2 sr-1 s-1
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: DiffProtonFluxes
attributeType:
descriptor: differential proton flux at specific energy bands for each telescope’s eleven primary data channels
units:
 DerivedUnit:
 identifier: cm-2 sr-1 s-1 keV-1
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 lineage: (L1_Lineage)
 processStep: (LE_ProcessStep)
The SEISS MPS-HI L1b Calibration Algorithm (SMHCA) produces the MPS-HI electron and proton fluxes. The MPS-HI raw count rates are first corrected for the dead-time effect using a simple formula. The proton count rates are assumed to be free from out-of-band contamination, based on pre-flight ground calibration activities. For the electron out-of-band contamination correction, the SMHCA will use data from the SEISS SGPS-X sensor unit (in particular, from Telescope 3) to correct the highest energy channels. Finally, the dead-time corrected, and contamination-free count rates for both protons and electrons are normalized by geometrical factors to obtain differential fluxes for the differential channels, and integral fluxes for the integral channels.

processor: (CI_ResponsibleParty)
- **organisationName:** WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 - **role:** (CI_RoleCode) processor

processor: (CI_ResponsibleParty)
- **organisationName:** RBU (Remote Backup Unit, Fairmont, WV)
 - **role:** (CI_RoleCode) processor

output: (LE_Source)
- **description:** The GOES-R Medium and High Energy Magnetospheric Electrons and Protons L1b Space and Solar End-Product consists of fluxes of medium and high energy electrons and protons derived from in situ measurements of electron and proton count rates. These measurements are retrieved from the Magnetospheric Particle Sensor High (MPS-HI) sensor which is one of the 5 scientific sensor units comprising the GOES-R Space Environment In Situ Suite (SEISS). The MPS-HI electron fluxes are reported for eleven energy bands and five angular zones. Ten of the energy bands are evenly spaced logarithmically and range from 50 keV to 4 MeV. Differential fluxes are reported for these bands. The eleventh energy channel collects electrons with energies greater than 2 MeV. Integral flux is reported for this channel. The MPS-Hi proton fluxes are also reported for eleven energy bands and five angular zones. However, all eleven of the proton energy bands are evenly spaced logarithmically and range from 80 keV to 12 MeV (i.e. there is no integral channel for the protons). Differential fluxes are reported for all eleven proton channels.

processedLevel: (MD_Identifier)
- **authority:** (CI_Citation)
 - **title:** NOAA Processing Levels
 - **date:** (CI_Date)
 - **date:** 2013-11
 - **dateType:** (CI_DateTypeCode) revision
 - **citedResponsibleParty:** (CI_ResponsibleParty)
 - **organisationName:** National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)

 contactInfo: (CI_Contact)
 - **onlineResource:** (CI_OnlineResource)
Product Definition and User’s Guide (PUG)
Appendix X

08 March 2019 DCN 7035538, Revision G.2

role: (CI_RoleCode) publisher
code: L1b

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code: GOES-16 SEISS MPS_Hi serial number
type: Magnetospheric Particle Sensor – High Energy Range (MPS-Hi)
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere,
solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:

code: GOES-17 SEISS MPS_Hi serial number
type: Magnetospheric Particle Sensor – High Energy Range (MPS-Hi)
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

4.1.8 Solar and Galactic Protons Product ISO Series Metadata

(fileIdentifier: 67e28dc8-4a39-11e4-9e35-164230d1df67
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for SEISS Level 1b Solar and Galactic Protons Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

96 NON-Export Controlled Information
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
 role: (CI_RoleCode) originator

dataStamp: 2017-05-11

metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data

dataSetURI: OR_SEIS-L1b-SGPS-ISO-SERIES_c20171311125000.xml

identificationInfo: (MD_Identifier)
 citation: (CI_Citation)
 title: GOES-R SEISS Level 1b Solar and Galactic Protons Product ISO Series Metadata
 alternateTitle: Data short name (DSN): SEIS-L1b-SGPS
 date: (CI_Date)
 date: 2017-05-11
 dateType: (CI_DateTypeCode) creation
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: gov.nesdis.noaa
 date: (CI_Date)
 date: 2014
 dateType: (CI_DateTypeCode) revision
 code: SEIS-L1b-SGPS
 citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: goes-r@noaa.gov
 role: (CI_RoleCode) originator

abstract: The GOES-R Solar and Galactic Protons L1b Space and Solar End-Product consists of fluxes of very high energy protons derived from in situ measurements of proton count rates. These measurements are retrieved from the two Solar and Galactic Proton Sensor (SGPS) sensor units, which are two of the 5 scientific sensor units comprising the GOES-R Space Environment In Situ Suite (SEISS). SGPS data is measured by two sensor units: SGPS-X and
SGPS+X. One sensor unit faces east, while the other faces west. Their respective positions reverse upon execution, by the spacecraft, of the yaw flip maneuver. There are three telescopes on each of the sensor units. The three telescopes all have the same central look direction. Proton fluxes are produced for every primary energy band of each of the three telescopes for each sensor unit. Each telescope has a unique number of energy bands spanning a unique energy range. For each sensor unit, there are a total of 13 primary, differential energy bands spanning 1 to 500 MeV, and one primary, integral channel for > 500 MeV particles. Differential proton fluxes are produced from the 13 primary, differential channels. An integral proton flux is produced from the one primary, integral channel.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: SUN-EARTH INTERACTIONS > IONOSPHERE/MAGNETOSPHERE DYNAMICS > ELECTRIC FIELDS/ELECTRIC CURRENTS > ALPHA PARTICLE FLUX > PROTON FLUX
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng
contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: T1_DifferentialProtonFluxes
 attributeType:
 descriptor: differential proton flux at specific energy bands for telescope 1’s primary proton data channels on each of the two sensor units
 units:
 DerivedUnit:
 identifier: cm-2 sr-1 s-1 keV-1
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: T2_DifferentialProtonFluxes
 attributeType:
 descriptor: differential proton flux at specific energy bands for telescope 2’s primary proton data channels on each of the two sensor units
 units:
 DerivedUnit:
 identifier: cm-2 sr-1 s-1 keV-1
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
aName: T3_DifferentialProtonFluxes
attributeType:
descr: differential proton flux at specific energy bands for telescope 3’s primary proton data channels on each of the two sensor units
units: DerivedUnit:
identifier: cm-2 sr-1 s-1 keV-1
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: T3P11_IntegralProtonFlux
attributeType:
descr: integral proton flux at energy band > 500 MeV for telescope 3’s primary integral data channel P11 on each of the two sensor units
units: DerivedUnit:
identifier: cm-2 sr-1 s-1
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) dataset
report: (DQ_CompletenessOmission)
namOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
	BaseUnit:
	identifier: percent
unitsSystem:

type:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The SEISS SGPS L1b Calibration Algorithm (SSCA) CSU produces proton fluxes for protons possessing the high energies indicative of their solar or galactic origins. SGPS data is measured by two sensor units: SGPS-X and SGPS+X. One sensor unit faces east, while the other faces west. Their respective positions reverse upon execution, by the spacecraft,
of the yaw flip maneuver. The SEISS SGPS L1b Calibration Algorithm (SSCA) produces the SGPS proton fluxes. Events (charged particles hitting a set of detectors) are not counted during those times when the instrument's processor is occupied with other tasks. This time interval, when events are not being counted, is known as “dead” time. The overall effect of having a dead time limitation is that the measured count rate is lower than the true count rate. Another instrumental limitation is that the measured count rate can be contaminated by charged particles of the wrong species, and/or having an energy outside of the desired energy range, and/or arriving at the detector from outside of the desired FOV. Collectively, this is known as “out-of-band” contamination. The SSCA will correct for these instrumental limitations.

processor: (CI_ResponsibleParty)

- **organisationName**: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 - **role**: (CI_RoleCode) processor

processor: (CI_ResponsibleParty)

- **organisationName**: RBU (Remote Backup Unit, Fairmont, WV)
 - **role**: (CI_RoleCode) processor

output: (LE_Source)

- **description**: The GOES-R Solar and Galactic Protons L1b Space and Solar End-Product consists of fluxes of very high energy protons derived from in situ measurements of proton count rates. These measurements are retrieved from the two Solar and Galactic Proton Sensor (SGPS) sensor units, which are two of the 5 scientific sensor units comprising the GOES-R Space Environment In Situ Suite (SEISS). SGPS data is measured by two sensor units: SGPS-X and SGPS+X. One sensor unit faces east, while the other faces west. Their respective positions reverse upon execution, by the spacecraft, of the yaw flip maneuver. There are three telescopes on each of the sensor units. The three telescopes all have the same central look direction. Proton fluxes are produced for every primary energy band of each of the three telescopes for each sensor unit. Each telescope has a unique number of energy bands spanning a unique energy range. For each sensor unit, there are a total of 13 primary, differential energy bands spanning 1 to 500 MeV, and one primary, integral channel for > 500 MeV particles. Differential proton fluxes are produced from the 13 primary, differential channels. An integral proton flux is produced from the one primary, integral channel.

processedLevel: (MD_Identifier)

- **authority**: (CI_Citation)
 - **title**: NOAA Processing Levels
 - **date**: (CI_Date)
 - **date**: 2013-11
 - **dateType**: (CI_DateTypeCode) revision
 - **citedResponsibleParty**: (CI_ResponsibleParty)
 - **organisationName**: National Oceanographic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)

contactInfo: (CI_Contact)

- **onlineResource**: (CI_OnlineResource)

role: (CI_RoleCode) publisher

code: L1b
metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date: code: status: (MD_ProgressCode) onGoing
parentOperation: platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date: code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning
detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code: GOES-16 SEISS SGPS serial numbers
type: Solar and Galactic Proton Sensor - SGPS

description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date: GOES-17 SEISS SGPS serial numbers
type: Solar and Galactic Proton Sensor - SGPS
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

4.1.9 Geomagnetic Field Product ISO Series Metadata

(fileIdentifier: f5816f50-fd6d-11e3-a3ac-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for Magnetometer Level 1b Geomagnetic Field Product Collection
contact: (CI_Originator)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_Originator) originator
dateStamp: 2017-05-17
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_MAG-L1b-GEOF-ISO-SERIES_c20171371644000.xml

title: GOES-R Magnetometer Level 1b Geomagnetic Field Product ISO Series Metadata
alternateTitle: Data short name (DSN): MAG-L1b-GEOF
date: (CI_Date)
The Geomagnetic Field product consists of the estimated ambient magnetic field in four coordinate reference frames, Earth Polar Normal, J2000 Earth-Centered Inertial, and the spacecraft’s Body Reference Frame and Attitude Control Reference Frame. The product also includes the compensated (calibrated and misalignment corrected) magnetic field in the native reference frame for both the inboard and outboard magnetometers. Furthermore, the product includes inboard and outboard magnetometer status flags, processing and data quality metadata, satellite state and location information, and data required for the generation of level 2 products.
DYNAMICS > MAGNETIC STORMS

type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
language: eng
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) geoscientificInformation
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
technology: TimePeriod:
beginPosition: 2017-05-17
endPosition: now

attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName: aName: IB_Data
attributeType:
descriptor: Compensated InBoard magnetometer data (x, y, z)
units:
DerivedUnit:
identifier: nT
derivationUnitTerm: derivationUnitTerm:
dimension: (MD_Band)
sequenceIdentifier:
MemberName: aName: OB_Data
attributeType:
descriptor: Compensated OutBoard magnetometer data (x, y, z)
units:
 DerivedUnit:
 identifier: nT
 derivationUnitTerm:
 derivationUnitTerm:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: The ground processing algorithm (GPA) for the magnetometer is required to convert the instrument raw data in scaled nanotesla (nT) to the three orthogonal components of the geomagnetic field in units of nT. The MAG L1b Algorithm applies calibration parameters to magnetometer data, performs the gradiometer calculations, and outputs the measured ambient magnetic field.
 processor: (CI_ResponsibleParty)
 organisationName: WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
 role: (CI_RoleCode) processor
 processor: (CI_ResponsibleParty)
 organisationName: RBU (Remote Backup Unit, Fairmont, WV)
 role: (CI_RoleCode) processor
 output: (LE_Source)
 processedLevel: (MD_Identifier)
 authority: (CI_Citation)
 title: NOAA Processing Levels
 date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
 citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
 contactInfo: (CI_Contact)
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/mag.html
date:
code: GOES-16 MAG serial number
type: Magnetometer
description: The GOES-R Magnetometer provides measurements of the space environment magnetic field that controls charged particle dynamics in the outer region of the magnetosphere. These particles can be dangerous to spacecraft and human spaceflight. The geomagnetic field measurements are important for providing alerts and warnings to many customers, including satellite operators and power utilities. GOES Magnetometer data are also important in research, being among the most widely used spacecraft data by the national and international research community. The GOES-R Magnetometer products will be an integral part of the National Oceanic and Atmospheric Administration (NOAA) space weather operations, providing information on the general level of geomagnetic activity and permitting detection of sudden magnetic storms. In addition, measurements will be used to validate large-scale space environment models that are used in operations. The MAG requirements are similar to the tri-axial fluxgates that have previously flown. GOES-R requires measurements of three components of the geomagnetic field with a resolution of 0.016 nT and response frequency of 2.5 Hz.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning
detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/mag.html
date:
code: GOES-17 MAG serial number
type: Magnetometer
description: The GOES-R Magnetometer will provide measurements of the space environment magnetic field that controls charged particle dynamics in the outer region of the magnetosphere. These particles can be dangerous to spacecraft and human spaceflight. The geomagnetic field measurements are important for providing alerts and warnings to many customers, including satellite operators and power utilities. GOES Magnetometer data are also important in research, being among the most widely used spacecraft data by the national and international research community. The GOES-R Magnetometer products will be an integral part of the National Oceanic and Atmospheric Administration (NOAA) space weather operations, providing information on the general level of geomagnetic activity and permitting detection of sudden magnetic storms. In addition, measurements will be used to validate large-scale space environment models that are used in operations. The MAG requirements are similar to the tri-axial fluxgates that have previously flown. GOES-R requires measurements of three components of the geomagnetic field with a resolution of 0.016 nT and response frequency of 2.5 Hz.

4.2 Level 1b Data

4.2.1 GRB Information ISO Series Metadata

```(MI_Metadata)
fileIdentifier: d60ed140-3a8a-11e3-aa6e-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for GRB Information Packets Dataset Collection
contact: (CI_ResponsibleParty)
  organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
  contactInfo: (CI_Contact)
```
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_GRB-INFO-ISO-SERIES_c20171311122000.xml

icontentInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: GOES-R GRB Information Dataset
alternateTitle: Data short name (DSN): GRB-INFO-ACQ
alternateTitle: Data short name (DSN): GRB-INFO-GLMP
alternateTitle: Data short name (DSN): GRB-INFO-MSG
alternateTitle: Data short name (DSN): GRB-INFO-NPRF
alternateTitle: Data short name (DSN): GRB-INFO-SCH
alternateTitle: Data short name (DSN): GRB-INFO-STAT
alternateTitle: Data short name (DSN): GRB-INFO-SUVP
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: GRB-INFO-*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: GRB information (GRB-INFO) provides data related to the operations, health and performance of the GOES-R series flight and ground system, and includes the following types of information: Satellite acquisition data; Mission schedule; Flight system status, ABI Image Navigation and Registration (INR) performance data, GLM INR performance data, SUVI INR performance data, and Operator message. Each of these types of GRB INFO exists as xml documents in separate CCSDS Space Packets.

pointOfContact: (CI_ResponsibleParty)

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

address: (CI_Address)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor

city: Silver Spring

administrativeArea: MD

postalCode: 20910

country: USA

electronicMailAddress: goes-r@noaa.gov

role: (CI_RoleCode) originator

resourceFormat: (MD_Format)

name: netCDF

version: 4

descriptiveKeywords: (MD_Keywords)

keyword: GRB INFO

keyword: GRB INFO PACKETS

keyword: GRB Information Packets

keyword: GOES Rebroadcast

type:

thesaurusName:

descriptiveKeywords: (MD_Keywords)

keyword: GOES > Geostationary Operational Environmental Satellites

keyword: GOES-R > Geostationary Operational Environmental Satellite R

type:

thesaurusName: (CI_Citation)

title: NASA Global Change Master Directory (GCMD) Earth Science Keywords

date: (CI_Date)

date: 2012-10

dateType: (CI_DateTypeCode) revision

edition: Version 7.0.0.0.0

citedResponsibleParty: (CI_ResponsibleParty)

role: (CI_RoleCode) author

resourceConstraints: (MD_SecurityConstraints)

useLimitation: Unrestricted

classification: (MD_ClassificationCode)

language: eng; USA
characterSet: (MD_CharacterSetCode) utf8

topicCategory: (MD_TopicCategoryCode) geoscientificInformation

extent: (EX_Extent)

 temporalElement: (EX_TemporalExtent)

 extent:

 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

contentInfo: (MD_CoverageDescription)

attributeDescription:

 RecordType: GRB-INFO-ACQ
 contentType: (MD_CoverageContentTypeCode) thematicClassification
 dimension: (MD_Band)

 sequenceIdentifier:
 MemberName:
 aName: GRB INFO State, Position, and Velocity Vectors
 attributeType:

 descriptor: Satellite Acquisition Data contains the latitude and longitude of the satellite sub-point at 30 minute intervals. This data is used by ground terminals to acquire and lock on the GRB RF downlink signal. Nominally, the satellite acquisition data is updated daily, and spans the subsequent seven day period. The frequency of update and time-span associated with the satellite acquisition data may change. Note that the more time that has passed since the generation of the satellite acquisition data, the greater the error in the satellite’s predicted location.

contentInfo: (MD_CoverageDescription)

attributeDescription:

 RecordType: GRB-INFO-SCH
 contentType: (MD_CoverageContentTypeCode) thematicClassification
 dimension: (MD_Band)

 sequenceIdentifier:
 MemberName:
 aName: GRB INFO Schedule and Operations
 attributeType:

 descriptor: Mission Schedule contains a tailored set of scheduled operations and maintenance tasks that affect the ability of the GOES-R system to produce products, or the quality of the products. These tasks typically involve commanding the spacecraft or an instrument to perform an operation. The scheduled time frame associated with each task is included. This data indirectly provides GRB users with notification that product degradation and delivery interruptions will be occurring in the hours and days ahead due to planned satellite maintenance activities. Nominally, the mission schedule is updated daily, and spans the subsequent seven day period. The frequency of update and time-span associated with the mission schedule may change.
contentInfo: (MD_CoverageDescription)
attributeDescription:
RecordType: GRB-INFO-STAT
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: GRB INFO Health and Status
attributeType:
descriptor: Flight System Status contains a configurable set of parameters, and their values and status that summarize the health and performance of the flight system. Parameters associated with the (1) communications, (2) command and data handling, (3) guidance, navigation, and control, (4) electrical power, (5) propulsion, (6) mechanical, (7) thermal control, or (8) instrument satellite subsystems, or aggregates thereof may be included. Nominally, the flight system status is updated daily. The frequency of update associated with the flight system status may change.

contentInfo: (MD_CoverageDescription)
attributeDescription:
RecordType: GRB-INFO-NPRF
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: GRB INFO ABI INR Performance
attributeType:
descriptor: ABI INR Performance Data contains statistics that summarize the ABI image navigation and registration (INR) performance associated with the GOES-R system. In addition to monitoring INR performance of the ABI and overarching GOES-R system, this data is used by GRB users to assess the mapping accuracy of ABI Level 1b and Level 2+ product data. These statistics are calculated using ABI Level 1b Radiances product images and landmarks. The image to map, band to band (channel to channel) and within frame statistics derived using landmarks are available for those ABI bands that can see the earth’s surface (i.e., ABI bands 1-3, 5-7, 11, and 13-16). The individual band statistics are aggregates, specifically 3-sigma values (i.e., sum of the absolute value of the mean value and three times the standard deviation), using measurements taken from individual images over a configurable sliding time window. Nominally, this sliding time window is set to 24 hours with the ABI INR performance data being updated daily. The sliding time window and frequency of update associated with the ABI INR performance data may change. As a result, if the sliding time window is configured to minutes up to several hours, and the ABI INR performance data is updated at a similar frequency, it is possible that at certain times during the day, no statistics are reported for the reflective bands (i.e., ABI bands 1-6) due to their inability to operate effectively at night.

contentInfo: (MD_CoverageDescription)
attributeDescription:
RecordType: GRB-INFO-GLMP
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: GRB INFO GLM INR Performance
attributeType:
descriptor: GLM INR Performance Data contains statistics that summarize the GLM INR performance associated with the GOES-R system. In addition to monitoring INR performance of the GLM and overarching GOES-R system, this data is used by GRB users to assess the mapping accuracy of the GLM Level 2+ Lightning Detection product data. These statistics are calculated using a background image observed by the GLM and downlinked periodically and landmarks. The statistics are aggregates, specifically 3-sigma values (i.e., sum of mean value and three times the standard deviation), using measurements taken from individual images over a configurable sliding time window. Nominally, this sliding time window is set to 24 hours, and the GLM INR performance data is updated daily. The sliding time window and frequency of update associated with the GLM INR performance data may change. As a result, if the sliding time window is configured to minutes up to several hours, and the GLM INR performance data is updated at a similar frequency, it is possible that at certain times during the day, no statistics are reported because of the inability of the GLM to generate satisfactory background images at night.

contentInfo: (MD_CoverageDescription)
attributeDescription:
RecordType: GRB-INFO-SUVP
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: GRB INFO SUVI INR Performance
attributeType:
descriptor: SUVI INR Performance Data contains statistics that summarize the SUVI INR performance associated with the GOES-R system. In addition to monitoring INR performance of the SUVI and overarching GOES-R system, this data is used by GRB users to assess the mapping accuracy of Level 1b SUVI Solar Imagery: EUV product data. These statistics are calculated using metadata fields in the SUVI Level 1b product that contain the location of the sun’s center, which are based on information received from the Guide Telescope, and the SUVI Level 1b one second exposure 195.1 angstrom solar image, which is best for locating the edge of the solar disk. The statistics are aggregates using measurements taken from individual images over a configurable fixed time window. Nominally, this fixed time window is set to 20 minutes with the SUVI INR performance data being updated daily. The fixed time window and frequency of update associated with the SUVI INR performance data may change.

contentInfo: (MD_CoverageDescription)
attributeDescription:
RecordType: GRB-INFO-MSG
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: Operator Message
attributeType:
descriptor: Operator Message contains a free-text message from a GOES-R system operator that has relevance to GRB users. The message may contain information about planned and unplanned product or service interruptions and anomalies, other anomalous conditions in the GOES-R ground or flight system, and product or service restoration information.

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode)
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code:
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on the GOES-R Series for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-R Series ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/glm.html
date:
code:
type: Geostationary Lightning Mapper

description: The Geostationary Lightning Mapper (GLM) is an optical transient
detector and imager operating in the near-IR that maps total lightning (in-cloud and cloud-to-
ground) activity with near uniform spatial resolution of approximately 8 km continuously day and
night over the Americas and adjacent ocean regions. The GLM provides early indication of storm
intensification and severe weather events, improved tornado warning lead time, and data for long-
term climate variability studies. The GLM provides information to identify growing, active, and
potentially destructive thunderstorms over land as well as ocean areas.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/suvi.html
date:
code:
type: Solar Ultraviolet Imager - SUVI

description: The GOES-R Solar Ultraviolet Imager is a telescope that monitors the
Sun in the extreme ultraviolet wavelength range. By observing the Sun, SUVI will be able to
compile full disk solar images around the clock.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)

description: The GOES-R System will acquire and disseminate environmental data
from a near-equatorial Earth orbit at geostationary altitude. This includes the Earth’s surface and
atmosphere, solar activity, and geosynchronous space environment. The major functions of the
GOES-R System are to support the Advanced Baseline Imager (ABI), Geostationary Lightning
 Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS),
Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R
System are to: (1) support terrestrial and oceanographic Data Collection Platforms (DCPs), (2)
relay High Rate Information Transmission (HRIT) data between earth terminals and relay the
Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN
link, and (3) provide rapid detection of distress messages from the Search and Rescue (SAR)
Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons
(EPIRBs). The GOES operational constellation provides coverage from two locations, one at 75°
West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code:
type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-R
Series for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16
different spectral bands, including two visible channels, four near-infrared channels, and ten
infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-R Series ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/glm.html
date:
code:
type: Geostationary Lightning Mapper
description: The Geostationary Lightning Mapper (GLM) is an optical transient detector and imager operating in the near-IR that maps total lightning (in-cloud and cloud-to-ground) activity with near uniform spatial resolution of approximately 10 km continuously day and night over the Americas and adjacent ocean regions. The GLM will provide early indication of storm intensification and severe weather events, improved tornado warning lead time of up to 20 minutes or more, and data for long-term climate variability studies. The GLM will provide information to identify growing, active, and potentially destructive thunderstorms over land as well as ocean areas.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/suvi.html
date:
code:
type: Solar Ultraviolet Imager - SUVI
description: The GOES-R Solar Ultraviolet Imager is a telescope that monitors the Sun in the extreme ultraviolet wavelength range. By observing the Sun, SUVI will be able to compile full disk solar images around the clock.

4.2.2 Sample Outlier Data ISO Series Metadata

(fileIdentifier: 21798500-3a7a-11e3-aa6e-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8)
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Sample Outlier Data File Collection
contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and
 Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
 role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions
 for imagery and gridded data
dataSetURI: OR_SOF-ISO-SERIES_c20171311307000.xml

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
 title: ABI Sample Outlier Data File
 alternateTitle: Data short name (DSN): ABI-L1b-SOF
 date: (CI_Date)
 date: 2017-05-11
 dateType: (CI_DateTypeCode) creation
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: gov.nesdis.noaa
 date: (CI_Date)
 date: 2014
 dateType: (CI_DateTypeCode) revision
 code: ABI-L1b-SOF
citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data,
 and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: goes-r@noaa.gov
An outlier is an ABI fixed grid pixel in a specific band whose ABI L1b radiance value is outside of the product’s measurement range because some of its constituent detector samples have radiance values indicating over-saturation. An ABI Sample Outlier Data file is a netCDF-4 file created for each ABI Radiances product image containing at least one outlier. A separate file created for each band, and in the case of band 2, a separate file is created for each of the five data paths. The band 2 data paths provide a partitioning of the high data volume associated with its 0.000014 radian horizontal spatial resolution to support concurrent processing in the instrument and ground system. An ABI Sample Outlier Data File contains resampled outlier radiance values, their corresponding Data Quality Flag, and the ABI fixed grid location of the resampled outlier. It also contains the source sample data received from the ABI, an ABI image chip (4 x 4 samples) for each resampled outlier pixel, along with a Data Quality Flag and the ABI fixed grid location for each of the 16 samples. This file is used to assess the impact of resampling saturated samples on product quality.

role: (CI_RoleCode) author

resourceConstraints: (MD_SecurityConstraints)

useLimitation: Unrestricted

classification: (MD_ClassificationCode) unclassified

language: eng; USA

characterSet: (MD_CharacterSetCode) utf8

topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere

extent: (EX_Extent)

temporalElement: (EX_TemporalExtent)

extent:

TimePeriod:

beginPosition: 2017-05-11

endPosition: now

contentInfo: (MI_CoverageDescription)

attributeDescription:

RecordType: variable

contentType: (MD_CoverageContentTypeCode) physicalMeasurement

dimension: (MD_Band)

sequenceIdentifier:

MemberName:

aName: OutlierPixel

attributeType:

descriptor: Resampled pixel radiance value (channels 1 - 6)

units:

DerivedUnit:

identifier: mW m-2 ster-1 um-1

derivationUnitTerm:

derivationUnitTerm:

derivationUnitTerm:

derivationUnitTerm:

scaleFactor:
	offset:

contentInfo: (MI_CoverageDescription)

attributeDescription:

RecordType: variable

contentType: (MD_CoverageContentTypeCode) physicalMeasurement

dimension: (MD_Band)

sequenceIdentifier:

MemberName:

aName: OutlierPixel

attributeType:
descriptor: ABI L1b Radiances per pixel (channels 7 - 16)

units:
- **DerivedUnit:**
 - **identifier:** mW m-2 sr-1 (cm-1)-1
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
- **scaleFactor:**
- **offset:**

contentInfo: (MI_CoverageDescription)
- **attributeDescription:**
 - **RecordType:** variable
 - **contentType:** (MD_CoverageContentTypeCode) physicalMeasurement
 - **dimension:** (MD_Band)
 - **sequenceIdentifier:**
 - **MemberName:**
 - **aName:** OutlierSamples
 - **attributeType:**
 - **descriptor:** The samples - 4x4 pixels - contributing to OutlierPixel. At least one is an outlier (channels 1 - 6)
 - **units:**
 - **DerivedUnit:**
 - **identifier:** mW m-2 ster-1 um-1
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
- **scaleFactor:**
- **offset:**

contentInfo: (MI_CoverageDescription)
- **attributeDescription:**
 - **RecordType:** variable
 - **contentType:** (MD_CoverageContentTypeCode) physicalMeasurement
 - **dimension:** (MD_Band)
 - **sequenceIdentifier:**
 - **MemberName:**
 - **aName:** OutlierSamples
 - **attributeType:**
 - **descriptor:** The samples - 4x4 pixels - contributing to OutlierPixel. At least one is an outlier (channels 7 - 16)
 - **units:**
 - **DerivedUnit:**
identifier: mW m-2 sr-1 (cm-1)-1
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: OutlierPixelDQF
 attributeType:
 descriptor: resampled outlier pixel data quality flag per pixel
units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start and end time of the scene in seconds since J2000 epoch (2000-01-01 12:00:00).
 result:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: An outlier is an ABI fixed grid pixel in a specific band whose ABI L1b radiance value is outside of the product’s measurement range because some of its constituent
detector samples have radiance values indicating over-saturation. An ABI Sample Outlier Data file is a netCDF-4 file created for each ABI Radiances product image containing at least one outlier.

processor: (CI_ResponsibleParty)
organisationName: NESDIS/OSPO at WCDAS (Wallops Command and Data Acquisition Station, Chincoteague, VA)
role: (CI_RoleCode) processor

processor: (CI_ResponsibleParty)
organisationName: NESDIS/OSPO at RBU (Remote Backup Unit, Fairmont, WV)
role: (CI_RoleCode) processor

output: (LE_Source)
processedLevel: (MD_Identifier)
authority: (CI_Citation)
title: NOAA Processing Levels
date: (CI_Date)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
onlineResource: (CI_OnlineResource)
role: (CI_RoleCode) publisher
code: L1b

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The
GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
трод: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
чо: GOES-East (G16)
description: The GOES-R System will acquire and disseminate environmental data from a near-equatorial Earth orbit at geostationary altitude. This includes the Earth's surface and atmosphere, solar activity, and geosynchronous space environment. The major functions of the GOES-R System are to support the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) support terrestrial and oceanographic Data Collection Platforms (DCPs), (2) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (3) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage from two locations, one at 75° West longitude and the second at 137° West longitude.
instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
чо: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn...
The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
- **identifier:** (MD_Identifier)
- **authority:** (CI_Citation)
- **title:** http://www.goes-r.gov
- **date:**
- **code:** GOES-West (G17)

description: The GOES-R System will acquire and disseminate environmental data from a near-equatorial Earth orbit at geostationary altitude. This includes the Earth's surface and atmosphere, solar activity, and geosynchronous space environment. The major functions of the GOES-R System are to support the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) support terrestrial and oceanographic Data Collection Platforms (DCPs), (2) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (3) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
- **identifier:** (MD_Identifier)
- **authority:** (CI_Citation)
- **title:** http://www.goes-r.gov/spacesegment/abi.html
- **date:**
- **code:** GOES-17 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
4.2.3 Instrument Calibration Data

(fileIdentifier: fbd4e2a0-3749-11e3-aa6e-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for GOES-R Instrument Calibration Data

(contact: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_CAL-ISO-SERIES_c20171311356000.xml

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: GOES-R Instrument Calibration Data
alternateTitle: Data short name (DSN): SAT-INST-CAL-EPH
alternateTitle: Data short name (DSN): ABI-INST-CAL-ENG
alternateTitle: Data short name (DSN): ABI-INST-CAL-M2C01
alternateTitle: Data short name (DSN): ABI-INST-CAL-M2C02-1
alternateTitle: Data short name (DSN): ABI-INST-CAL-M2C02-2
alternateTitle: Data short name (DSN): ABI-INST-CAL-M2C02-3
alternateTitle: Data short name (DSN): ABI-INST-CAL-M2C02-4
alternateTitle: Data short name (DSN): ABI-INST-CAL-M2C02-5
alternateTitle: Data short name (DSN): ABI-INST-CAL-M2C02-3
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C01
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C02-1
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C02-2
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C02-3
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C02-4
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C02-5
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C03
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C04
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C05
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C06
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C07
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C08
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C09
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C10
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C11
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C12
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C13
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C14
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C15
alternateTitle: Data short name (DSN): ABI-INST-CAL-M3C16
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C01
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C02-1
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C02-2
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C02-3
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C02-4
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C02-5
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C03
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C04
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C05
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C06
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C07
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C08
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C09
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C10
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C11
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C12
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C13
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C14
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C15
alternateTitle: Data short name (DSN): ABI-INST-CAL-M4C16
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C01
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C02-1
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C02-2
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C02-3
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C02-4
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C02-5
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C03
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C04
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C05
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C06
alternateTitle: Data short name (DSN): ABI-INST-CAL-LUN-M3C07
The Instrument Calibration Data product contains the data needed to evaluate,
monitor, and trend sensor performance. ABI instrument calibration data contains engineering data (hourly generation), calibration data by timeline ID, and lunar data for each channel 1 - 16. This includes component temperatures, noise (NEDR - Noise Equivalent Delta Radiance, NEDT - Noise Equivalent Delta Temperature), calibration coefficients, blackbody counts, space view counts, Radiometric Platinum Resistance Thermometer (PRT) counts, Lunar scan, star catalog scan data, solar calibration target counts, and time and ephemeris data. Information for other instruments to be added.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: SPECTRAL/ENGINEERING > VISIBLE WAVELENGTHS > SENSOR COUNTS
keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > SENSOR COUNTS
keyword: SPECTRAL/ENGINEERING > PLATFORM CHARACTERISTICS > ORBITAL CHARACTERISTICS
keyword: SPECTRAL/ENGINEERING > PLATFORM CHARACTERISTICS > ATTITUDE CHARACTERISTICS
keyword: SPECTRAL/ENGINEERING > SENSOR CHARACTERISTICS
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2013
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
attributeType: descriptor: difference between Priority 3 (Hydrogen) and Priority 1 (Heavy Ions) measured hardware coincident count rate for non-prime and prime condition. Value should always be positive

units:
 DerivedUnit:
 identifier: count (3 s)-1
 derivationUnitTerm:
 scaleFactor:
 offset:

dimension: (MD_Band)

sequenceIdentifier:
 MemberName:
 aName: ehis_hcr_priority_count_rate
 attributeType:
 descriptor: measured hardware coincident count rate for the three EHIS priority categories in non-prime and prime conditions

units:
 DerivedUnit:
 identifier: count (3 s)-1
 derivationUnitTerm:
 scaleFactor:
 offset:

dimension: (MD_Band)

sequenceIdentifier:
 MemberName:
 aName: ehis_relative_pec_counts
 attributeType:
descriptor: percent of pulse height analysis event counts that are valid for the three EHIS priority categories

units:
- **DerivedUnit:**
 - **identifier:** percent
- **derivationUnitTerm:**
- **scaleFactor:**
- **offset:**
- **dimension:** (MD_Band)

sequenceIdentifier:
- **MemberName:**
 - **aName:** ehis_dead_time_corrections
- **attributeType:**
 - **descriptor:** energetic heavy ions count rate multiplicative dead-time correction factor for EHIS

units:
- **scaleFactor:**
- **offset:**
- **dimension:** (MD_Band)

sequenceIdentifier:
- **MemberName:**
 - **aName:** ehis_rear-entry_contamination_corrections
- **attributeType:**
 - **descriptor:** rear-entry multiplicative contamination correction factor for each of the three EHIS priority categories

units:
- **scaleFactor:**
- **offset:**
- **dimension:** (MD_Band)

sequenceIdentifier:
- **MemberName:**
 - **aName:** mps-hi_electron_singles_channel_count_rate
 - **attributeType:**
 - **descriptor:** measured electron singles channel count rate for each MPS-HI electron telescopes' logical detectors

units:
- **DerivedUnit:**
 - **identifier:** count s-1
- **derivationUnitTerm:**
- **scaleFactor:**
- **offset:**
- **dimension:** (MD_Band)

sequenceIdentifier:
- **MemberName:**
 - **aName:** mps-hi_proton_singles_channel_count_rate
 - **attributeType:**
 - **descriptor:** measured proton singles channel count rate for each MPS-HI proton
telescopes' logical detectors

units:
 DerivedUnit:
 identifier: count s-1
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: mps-hi_electron_dead_time_corrections
 attributeType:
 descriptor: electron count rate dead-time correction factor in divisor form for each MPS-HI electron telescope

units:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: mps-hi_proton_dead_time_corrections
 attributeType:
 descriptor: proton count rate dead-time correction factor in divisor form for each MPS-HI proton telescope

units:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: mps-lo_electron_background_channel_count_rate
 attributeType:
 descriptor: average electron background channel count rate for each MPS-LO sensor head

units:
 DerivedUnit:
 identifier: count s-1
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: mps-lo_ion_background_channel_count_rate
 attributeType:
 descriptor: average ion background channel count rate for each MPS-LO sensor head
DerivedUnit:
identifier: count s-1
derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: mps-lo_electron_dead_time_corrections
attributeType:
descriptor: electron count rate dead-time correction factor in divisor form for each MPS-LO angular zone’s energy bands
units:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: mps-lo_ion_dead_time_corrections
attributeType:
descriptor: ion count rate dead-time correction factor in divisor form for each MPS-LO angular zone’s energy bands
units:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: sgps-x_singles_channel_count_rate
attributeType:
descriptor: measured singles channel count rate for each SGPS-X telescope’s detectors
units:
DerivedUnit:
 identifier: count s-1
derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: sgps+x_singles_channel_count_rate
attributeType:
descriptor: measured singles channel count rate for each SGPS+X telescope’s detectors
units:
DerivedUnit:
 identifier: count s-1
derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: sgps-x_proton_dead_time_corrections
attributeType:
descriptor: proton count rate dead-time correction factor in divisor form for each SGPS-X telescope
units:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: sgps+x_proton_dead_time_corrections
attributeType:
descriptor: proton count rate dead-time correction factor in divisor form for each SGPS+X telescope
units:
scaleFactor:
offset:
rangeElementDescription: (MI_RangeElementDescription)
 name: SEISS Instrument Calibration Data
definition: (EHIS) The EHIS data consists of the HCR priority count rate, which is the measured hardware coincident count rate for the three EHIS priority categories in both non-prime and prime conditions (i.e., Non-Prime_P1, Non-Prime_P2, Non-Prime_P3, Prime_P1, Prime_P2, and Prime_P3). The relative PEC counts are the percent of pulse height analysis event counts that are valid for the three EHIS priority categories, P1-Heavy_Ions, P2-Helium, and P3-Hydrogen. The dead-time corrections data represent the energetic heavy ions count rate multiplicative dead-time correction factor for EHIS. Finally, the rear-entry contamination corrections represent the rear-entry multiplicative contamination correction factor for each of the three EHIS priority categories. (SGPS) The SGPS data consists of the SGPS-X singles channel count rate, the SGPS+X singles channel count rate, the SGPS-X proton dead time corrections, and the SGPS+X proton dead time corrections. The data structures representing SGPS-X and SGPS+X singles channel count rates are both dependent upon the three SGPS telescopes, the three SGPS detectors, and the number of time samples. Both the SGPS-X dead time correction data and the SGPS+X dead time correction data are dependent on the number of SGPS telescopes, as well as the number of time samples. (MPS-HI) The MPS-Hi data consists of the electron singles channel count, the proton singles channel count, the electron dead-time correction and the proton dead-time correction. The electron and proton singles channel counts are a function of the five MPS-HI telescopes, the four MPS-HI electron detectors, and the number of time samples. The MPS-HI electron and proton dead-time corrections are both a function of the number of MPS-HI telescopes and time samples. (MPS-Lo) The MPS-LO data consists of: the average electron background channel count rate for each of the two (R and L) sensor heads; the average ion background channel count rate for each of the two sensor heads; the electron count rate dead-time correction factor (in divisor form) for each MPS-LO angular zone; and the ion count rate dead-
time correction factor (in divisor form) for each MPS-LO angular zone. The electron and ion background channel count rates are array structures sized according to the two MPS-LO sensor heads, and the time samples. The dead-time correction data are sized according to the sixteen MPS-LO angular zones, fifteen MPS-LO energy steps, and the time samples.

```plaintext
rangeElement:

contentInfo: (MI_CoverageDescription)
attributeDescription:
  RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
  sequenceIdentifier:
  MemberName: 
    aName: SU_Telemetry
  attributeType:
  descriptor: EXIS instrument telemetry item value
  units:
  scaleFactor:
  offset:
rangeElementDescription: (MI_RangeElementDescription)
  name: EXIS Instrument Calibration Engineering
  definition: EXIS telemetry data
  rangeElement:

contentInfo: (MI_CoverageDescription)
attributeDescription:
  RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
  sequenceIdentifier:
  MemberName: 
    aName: mag_dqf
  attributeType:
  descriptor: magnetometer data quality flags
  units:
  scaleFactor:
  offset:
dimension: (MD_Band)
  sequenceIdentifier:
  MemberName: 
    aName: ib_mag_status
  attributeType:
  descriptor: inbound magnetometer status flags
  units:
  scaleFactor:
```
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: ob_mag_status
attributeType:
descriptor: outbound magnetometer status flags
units:
scaleFactor:

offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: ib_mag_x_coord, ib_mag_y_coord, ib_mag_z_coord
attributeType:
descriptor: inboard magnetometer raw x, y and z measurements
units:
 DerivedUnit:
 identifier: count
 derivationUnitTerm:
scaleFactor:

offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: ob_mag_x_coord, ob_mag_y_coord, ob_mag_z_coord
attributeType:
descriptor: outboard magnetometer raw x, y and z measurements
units:
 DerivedUnit:
 identifier: count
 derivationUnitTerm:
scaleFactor:

rangeElementDescription: (MI_RangeElementDescription)
name: MAG Instrument Calibration Data
definition: The Magnetometer calibration data represents the level 0 instrument inboard and outboard measurement data, and corresponding status information, for a time period of one second collected during a calibration maneuver. This information consists of magnetometer data quality flags, inboard and outboard status flags, and inboard and outboard raw sensor measurements in x,y,z coordinates. The time of the Magnetometer observation is provided, expressed in seconds since the J2000 epoch starting from 1 January 2000 at 12:00:00. Each instance of the Magnetometer data quality flag indicates whether the 10 samples of the raw x,y,z inboard and outboard data are of good quality or is a missing value. The data quality flag is a vector that consists of 10 elements, in which each element has a unique flag value. In addition, the MAG Instrument Calibration Data file includes an inboard magnetometer status flag and an outboard magnetometer status flag, in which each such status flag is a 10 element vector.
rangeElement:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: SU_Telemetry
 attributeType:
 descriptor: MAG instrument telemetry item value
 units:
 scaleFactor:
 offset:
rangeElementDescription: (MI_RangeElementDescription)
 name: MAG Instrument Calibration Engineering
 definition: MAG telemetry data
 rangeElement:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: filterwheel1_position
 attributeType:
 descriptor: forward filter wheel setting
 units:
 scaleFactor:
 offset:
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: filterwheel2_position
 attributeType:
 descriptor: aft filter wheel setting
 units:
 scaleFactor:
 offset:
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
aName: readout_side
attributeType:
descriptor: flags indicating the CCD readout configuration
units:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: image
attributeType:
descriptor: SUVI miscellaneous calibration frame data (in digital numbers)
units:
DerivedUnit:
identifier: count
derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF
attributeType:
descriptor: SUVI miscellaneous calibration frame data quality flags
units:
scaleFactor:
offset:
rangeElementDescription: (MI_RangeElementDescription)
name: SUVI Instrument Frame Calibration Data
definition: The SUVI miscellaneous calibration frame product is intended to represent data obtained during the calibration activities concerning CCD flat fields, light transfer measurements, visible light images, EXIS cross calibration, and focus checks. CCD flat fields are obtained bi-annually. Light transfer measurements are obtained quarterly and during eclipses. Visible light images are obtained at least daily, as are EXIS cross calibration measurements. Finally, the focus check is performed annually, at a minimum. These on-orbit calibration operations can be accomplished during normal operations using designated calibration slots in the four minute SUVI imaging sequence. The start time of the calibration frame product is expressed in seconds since 1 January 2000 at 12:00 UTC. The SUVI miscellaneous calibration frame product provides information concerning the wavelength of the image frame, expressed in units of Angstroms. Information is also included that describes the active position of each of the two filter wheels. The readout configuration of the CCD is provided. Finally, a raw data downlink CCSDS APID variable is included indicating that the SUVI miscellaneous calibration frame has been received. The calibration data file consists of an image array and an array of data quality flags (DQF). The image and DQF arrays are sized such that the extent is 1292 rows by 1330 columns. The data in the image array is expressed in terms of units of digital numbers (i.e., counts) and is of type short, with a valid range of 0 to 16383. The data quality flag is represented by an array in which each element is a byte data type.
The SUVI dark frame calibration product is intended to measure the inherent bias and noise in the camera electronics, and to map permanently bad (i.e. hot) pixels. Such frames are taken as a standard exposure with the camera shutter closed. Ideally, a median dark frame is created for each exposure every four hours. The start time of the calibration frame product is expressed in seconds since 1 January 2000 at 12:00 UTC. The SUVI miscellaneous calibration frame product provides information concerning the readout configuration of the CCD. A raw data downlink CCSDS APID variable is included which indicates that the SUVI miscellaneous calibration frame has been received. The dark frame calibration data file consists of an image array and an array of data quality flags (DQF). The image and DQF arrays are sized such that the extent is 1292 rows by 1330 columns. The data in the image array is expressed in terms of units of digital numbers (i.e., counts). It is of type short, with a valid range of 0 to 16383. The data quality flag is represented by an array in which each element is a byte data type.
RecordType: variable
cContentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: SU_Telemetry
 attributeType:
 descriptor: SUVI instrument telemetry item value
 units:
 scaleFactor:
 offset:
rangeElementDescription: (MI_RangeElementDescription)
 name: SUVI Instrument Calibration Engineering
 definition: SUVI telemetry data
 rangeElement:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
cContentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: ict
 attributeType:
 descriptor: infrared calibration target data digital numbers for emissive bands
 units:
 DerivedUnit:
 identifier: count
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: ict_nedn
 attributeType:
 descriptor: infrared calibration target calculated noise equivalent change in radiance (NEdN) for detectors of emissive bands over single calibration sampling period
 units:
 DerivedUnit:
 identifier: mW m-2 sr-1 (cm-1)-1
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: ict_nedt
attributeType:
descriptor: infrared calibration target calculated noise equivalent differential temperature (NEdT) for detectors of emissive bands over single calibration sampling period
units:
DerivedUnit:
identifier: K
derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: ict_nedt
attributeType:
descriptor: infrared calibration target calculated noise equivalent differential temperature (NEdT) for detectors of emissive bands over single calibration sampling period
units:
DerivedUnit:
identifier: K
derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: ict_nedn
attributeType:
descriptor: infrared calibration target calculated noise equivalent differential temperature (NEdT) for detectors of emissive bands over single calibration sampling period
units:
DerivedUnit:
identifier: K
derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: sct_nedn
attributeType:
descriptor: solar calibration target calculated noise equivalent change in radiance (NEdN) for detectors of reflective bands over single calibration sampling period
units:
DerivedUnit:
identifier: W m-2 sr-1 um-1
derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: sct_signal_to_noise
attributeType:
descriptor: solar calibration target calculated signal to noise ratio for detectors of reflective bands over single calibration sampling period
units:
scaleFactor:
offset:

NON-Export Controlled Information
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: spacelook
 attributeType:
 descriptor: space look calibration data digital numbers for reflective and emissive
 band scalibration sampling period
 units:
 DerivedUnit:
 identifier: count
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: spacelook_nedn
 attributeType:
 descriptor: space look calibration calculated noise equivalent change in radiance
 (NEdN) for detectors of reflective and emissive bands over single calibration sampling period
 units:
 DerivedUnit:
 identifier: W m-2 sr-1 um-1 for reflective bands, mW m-2 sr-1 (cm-1)-1 for emissive
 bands
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: spacelook_nedt
 attributeType:
 descriptor: space look calibration calculated noise equivalent differential temperature
 (NEdT) for detectors of emissive bands over single calibration sampling period over single
 calibration sampling period
 units:
 DerivedUnit:
 identifier: K
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: starlook
 attributeType:
 descriptor: calibrated star look radiance for detectors over single calibration sampling
The ABI instrument calibration product files contain data representative of the ABI Space Look, Infrared Calibration Target (ICT) (i.e., blackbody), Star Look Target, and Solar Calibration Target (SCT) (i.e., solar look target). These observations are dependent on the ABI band and the individual detectors. There are three types of Space Look observations. There is the Space Look associated with the beginning of a Mode 3, Mode 4 and Mode 6 timeline. Data from these observations are used in conjunction with the ICT observations to compute the gain coefficient of each detector of an ABI emissive band. There is also an SCT Space Look, which is essentially just a longer duration Space Look obtained at the time of the SCT observation to facilitate the computation of reflective band gain coefficients. The product data contain information on the ICT, SCT and Space Look, both in terms of the discrete measurement values, as well as in terms of the statistical metrics derived from them. The ICT statistical data are min, max, mean and standard deviation of the ICT detector samples for each detector of the ABI emissive channel of interest. Similarly, the SCT data contain min, max, mean and standard deviation of the SCT detector data for each detector of the ABI reflective channel of interest. ICT data are collected at the very beginning of the ABI Mode 3 timeline and the ABI Mode 4 timeline. This is followed by a Space Look observation. Such pairs of observations, taking into account the ABI scan mirror radiometric properties obtained at these times, leads to the computation of detector gain coefficient values. The remaining Space Look observations during a Mode 3 or Mode 4 sequence always precede a swath scan of the Earth. The ABI cal data products include the raw ICT counts, and the associated statistical metrics (min, max, mean, standard deviation). In addition, metrics quantifying detector sensitivity are included in the form of ICT NEdN values, and ICT NEdT values for each detector. SCT data are collected during the ABI diagnostic mode. Such observations occur daily or weekly in the very beginning of the GOES-R mission, gradually tapering off in frequency to several times per year as the end of mission life of GOES-R approaches. Each SCT observation is accompanied by an SCT Space Look, an extended duration version of the Space Look observation obtained during normal mode operations. The ABI cal data products include the raw SCT counts, and the associated statistical metrics (min, max, mean, standard deviation). In addition, metrics quantifying detector sensitivity are included
in the form of SCT SNR values, and SCT NEdN values for each detector. Space Look data are provided for the ABI channel of interest. In normal mode operation, a Space Look observation takes place at the beginning of an ABI Mode 3 and Mode 4 observation in conjunction with the ICT observation. Subsequent Space Look observations are collected at the beginning of each Full Disk scan of the Earth. Along with the raw Space Look data, the ABI calibration files contain associated statistical metrics in the form of min, max, mean and standard deviation per detector for the ABI channel of interest. In addition, metrics quantifying detector sensitivity are provided in the form of Space Look NEdN and Space Look NEdT, where the latter metric is associated with emissive bands, only. Star look data are collected for ABI reflective channels during Mode 3, Mode 4 and Mode 6 operations. Nominally, six star scene observations are obtained during each such mode. There are a total of seven ABI star scene ID types. Star scene ID values of 4 through 9 represent one star scene for each reflective channel. Star scene ID 10 is reserved for a star scene observation associated with an emissive channel. The star look data is represented in the calibration product file in terms of calibrated radiances, data quality flags, and computed gain coefficients.

rangeElement:

currentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: radiance
 attributeType:
 descriptor: lunar scan calibrated sample radiance values
 units:
 DerivedUnit:
 identifier: W m-2 sr-1 um-1 for reflective bands, mW m-2 sr-1 (cm-1)-1 for emissive bands
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: radiance_dqf
 attributeType:
 descriptor: lunar scan calibrated sample radiance value data quality flags
 units:
 scaleFactor:
 offset:
 rangeElementDescription: (MI_RangeElementDescription)
 name: ABI Instrument Calibration Lunar Scan
 definition: Lunar scan data is an off-earth mesoscale scene, and collected as part of an
ABI Mode 3 or Mode 6 timeline when the Moon is in the field of regard of the ABI instrument. The apparent size of the Moon in the field of regard of the ABI subtends a size suitable for coverage using the ABI mesoscale scene type consisting of two swaths. This data is collected for all ABI bands. Lunar scan data samples are radiometrically calibrated. The Moon’s surface is scanned for calibration purposes only. Separate files are created for each band and each occurrence of an ABI Mode 3 or Mode 6 timeline, which correspond to fifteen and 10 minutes, respectively. In the case of band 2, five different files are created, one for each of the data paths. The band 2 data paths provide a partitioning of the high data volume associated with its 0.000014 radian horizontal spatial resolution to support concurrent processing in the instrument and ground system.

```markdown
**rangeElement:**

```

```markdown
**contentInfo:** (MI_CoverageDescription)
attributeDescription:
  RecordType: variable
dimension: (MD_Band)
  sequenceIdentifier:
    MemberName: SU_Telemetry
    aName: ABI Instrument Calibration Engineering
    attributeType: descriptor: ABI instrument telemetry item value
    units:
    scaleFactor:
    offset:
  name: ABI Instr Institute Calibration Engineering
  definition: ABI telemetry data
  rangeElement:

**contentInfo:** (MI_CoverageDescription)
attributeDescription:
  RecordType: variable
dimension: (MD_Band)
  sequenceIdentifier:
    MemberName: image
    aName: GLM native background image (in digital numbers)
    attributeType: descriptor: GLM native background image (in digital numbers)
    units: DerivedUnit:identifier: count
derivationUnitTerm: scaleFactor:
```
offset:
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: image_dqf
attributeType:
descriptor: GLM native background image data quality flags
units:
scaleFactor:
offset:
rangeElementDescription: (MI_RangeElementDescription)
 name: GLM Instrument Calibration
 definition: The GLM generates a background image periodically, interleaved with the detection of events in support of detecting false events, and instrument calibration. A background image is a scene composed of the background from all detector elements in the focal plane.
 rangeElement:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: SU_Telemetry
attributeType:
descriptor: GLM instrument telemetry item value
units:
scaleFactor:
offset:
rangeElementDescription: (MI_RangeElementDescription)
 name: GLM Instrument Calibration Engineering
 definition: GLM telemetry data
 rangeElement:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: attitudeTimes
attributeType:
descriptor: time of the attitude observation (Q0, Q1, Q2, and Q3) in seconds since J2000
epoch (2000-01-01 12:00:00)

 units:
 DerivedUnit:
 identifier: seconds since 2000-01-01 12:00:00
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: orbitTimes
 attributeType:
 descriptor: time of the orbit observation (x, y, z, theta_x, theta_y, theta_z) in seconds

since J2000 epoch (2000-01-01 12:00:00)

 units:
 DerivedUnit:
 identifier: seconds since 2000-01-01 12:00:00
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: x
 attributeType:
 descriptor: x-position of the spacecraft in the J2000 inertial reference frame

 units:
 DerivedUnit:
 identifier: km
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: y
 attributeType:
 descriptor: y-position of the spacecraft in the J2000 inertial reference frame

 units:
 DerivedUnit:
 identifier: km
 derivationUnitTerm:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
aName: z
attributeType:
descriptor: z-position of the spacecraft in the J2000 inertial reference frame
units:
 DerivedUnit:
 identifier: km
 derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: theta-x
 attributeType:
descriptor: x-velocity of the spacecraft in the J2000 inertial reference frame
units:
 DerivedUnit:
 identifier: km s\(^{-1}\)
 derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: theta-y
 attributeType:
descriptor: y-velocity of the spacecraft in the J2000 inertial reference frame
units:
 DerivedUnit:
 identifier: km s\(^{-1}\)
 derivationUnitTerm:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: theta-z
 attributeType:
descriptor: z-velocity of the spacecraft in the J2000 inertial reference frame
units:
 DerivedUnit:
 identifier: km s\(^{-1}\)
 derivationUnitTerm:
scaleFactor:
offset:
MemberName:
aName: Q0
attributeType:
descriptor: \(Q_0 = \cos(\phi / 2) \). \(\phi \) is the angle between the J2000 reference and body frame of reference
units:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: Q1
attributeType:
descriptor: \(Q_1 = e_1 * \sin(\phi / 2) \). \(\phi \) is the angle between the J2000 reference and body frame of reference. \(e_1 \) is a component of the unit rotation vector \(u \) in either frame
units:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: Q2
attributeType:
descriptor: \(Q_2 = e_2 * \sin(\phi / 2) \). \(\phi \) is the angle between the J2000 reference and body frame of reference. \(e_2 \) is a component of the unit rotation vector \(u \) in either frame
units:
scaleFactor:
offset:
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: Q3
attributeType:
descriptor: \(Q_3 = e_3 * \sin(\phi / 2) \). \(\phi \) is the angle between the J2000 reference and body frame of reference. \(e_3 \) is a component of the unit rotation vector \(u \) in either frame
units:
scaleFactor:
offset:
rangeElementDescription: (MI_RangeElementDescription)
name: Satellite Instrument Calibration Ephemeris
definition: Satellite ephemeris data
rangeElement:

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information
about a collection of datasets of a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)

operation: (MI_Operation)

description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://science.nasa.gov/missions/goes-r/

date:
code:
status: (MD_ProgressCode) onGoing

parentOperation:

platform: (MI_Platform)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov

date:
code: GOES-R-S-T

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of
distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on the GOES-R Series for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-R Series ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS)

description: The EXIS contains two primary sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the Sun. EXIS will reside on the Sun Pointing Platform mounted in the yoke of the solar array. The instrument also includes the Sun Positioning Sensor (SPS).

Geostationary Lightning Mapper (GLM)

description: The Geostationary Lightning Mapper (GLM) is an optical transient detector and imager operating in the near-IR that maps total lightning (in-cloud and cloud-to-ground) activity with near uniform spatial resolution of approximately 8 km continuously day and night over the Americas and adjacent ocean regions. The GLM provides early indication of storm
intensification and severe weather events, improved tornado warning lead time, and data for long-
term climate variability studies. The GLM provides information to identify growing, active, and
potentially destructive thunderstorms over land as well as ocean areas.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/mag.html
date:
code:
type: Magnetometer
description: The GOES-R Magnetometer provides measurements of the space
environment magnetic field that controls charged particle dynamics in the outer region of the
magnetosphere. These particles can be dangerous to spacecraft and human spaceflight. The
g geomagnetic field measurements are important for providing alerts and warnings to many
customers, including satellite operators and power utilities. GOES Magnetometer data are also
important in research, being among the most widely used spacecraft data by the national and
international research community. The GOES-R Magnetometer products will be an integral part
of the National Oceanic and Atmospheric Administration (NOAA) space weather operations,
providing information on the general level of geomagnetic activity and permitting detection of
sudden magnetic storms. In addition, measurements will be used to validate large-scale space
environment models that are used in operations. The MAG requirements are similar to the tri-
axial fluxgates that have previously flown. GOES-R requires measurements of three components
of the geomagnetic field with a resolution of 0.016 nT and response frequency of 2.5 Hz.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code:
type: SEISS Energetic Heavy Ion Sensor (EHIS)
description: The SEISS instrument suite consists of: the Energetic Heavy Ion
Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO),
and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data
Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the
magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This
includes particles trapped within Earth’s magnetosphere and particles arriving directly from the
sun and cosmic rays which have been accelerated by electromagnetic fields in space.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code:
type: Magnetospheric Particle Sensor – High Energy Range (MPS-Hi)
description: The SEISS instrument suite consists of: the Energetic Heavy Ion
Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO),
and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data
Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
 title: http://www.goes-r.gov/spacesegment/seiss.html
 date:
 code:
type: Magnetospheric Particle Sensor – Low Energy Range (MPS-Lo)
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
 title: http://www.goes-r.gov/spacesegment/seiss.html
 date:
 code:
type: Solar and Galactic Proton Sensor - SGPS
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
 title: http://www.goes-r.gov/spacesegment/suvi.html
 date:
 code:
type: Solar Ultraviolet Imager - SUVI
description: The GOES-R Solar Ultraviolet Imager is a telescope that monitors the Sun in the extreme ultraviolet wavelength range. By observing the Sun, SUVI will be able to compile full disk solar images around the clock.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
 title: http://www.goes-r.gov
 date:
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth’s surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

Advanced Baseline Imager

The Advanced Baseline Imager is the primary instrument on the GOES-R Series for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-R Series ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS)

The EXIS contains two primary sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the Sun. EXIS will reside on the Sun Pointing Platform mounted in the yoke of the solar array. The
instrument also includes the Sun Positioning Sensor (SPS).

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/glm.html
date:
code:
type: Geostationary Lightning Mapper
description: The Geostationary Lightning Mapper (GLM) is an optical transient detector and imager operating in the near-IR that maps total lightning (in-cloud and cloud-to-ground) activity with near uniform spatial resolution of approximately 8 km continuously day and night over the Americas and adjacent ocean regions. The GLM provides early indication of storm intensification and severe weather events, improved tornado warning lead time, and data for long-term climate variability studies. The GLM provides information to identify growing, active, and potentially destructive thunderstorms over land as well as ocean areas.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/mag.html
date:
code:
type: Magnetometer
description: The GOES-R Magnetometer provides measurements of the space environment magnetic field that controls charged particle dynamics in the outer region of the magnetosphere. These particles can be dangerous to spacecraft and human spaceflight. The geomagnetic field measurements are important for providing alerts and warnings to many customers, including satellite operators and power utilities. GOES Magnetometer data are also important in research, being among the most widely used spacecraft data by the national and international research community. The GOES-R Magnetometer products will be an integral part of the National Oceanic and Atmospheric Administration (NOAA) space weather operations, providing information on the general level of geomagnetic activity and permitting detection of sudden magnetic storms. In addition, measurements will be used to validate large-scale space environment models that are used in operations. The MAG requirements are similar to the tri-axial fluxgates that have previously flown. GOES-R requires measurements of three components of the geomagnetic field with a resolution of 0.016 nT and response frequency of 2.5 Hz.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code:
type: SEISS Energetic Heavy Ion Sensor (EHIS)
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This
includes particles trapped within Earth’s magnetosphere and particles arriving directly from the
sun and cosmic rays which have been accelerated by electromagnetic fields in space.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code:
type: Magnetospheric Particle Sensor – High Energy Range (MPS-Hi)
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code:
type: Magnetospheric Particle Sensor – Low Energy Range (MPS-Lo)
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/seiss.html
date:
code:
type: Solar and Galactic Proton Sensor - SGPS
description: The SEISS instrument suite consists of: the Energetic Heavy Ion Sensor (EHIS), the Magnetospheric Particle Sensors - High and Low (MPS-HI and MPS-LO), and the Solar and Galactic Proton Sensor (SGPS). The instrument suite also includes the Data Processing Unit (DPU). The EHIS is responsible for measuring heavy ion fluxes in the magnetosphere to provide a complete picture of the energetic particles surrounding Earth. This includes particles trapped within Earth’s magnetosphere and particles arriving directly from the sun and cosmic rays which have been accelerated by electromagnetic fields in space.
The GOES-R Solar Ultraviolet Imager is a telescope that monitors the Sun in the extreme ultraviolet wavelength range. By observing the Sun, SUVI will be able to compile full disk solar images around the clock.

4.2.4 Level 1b Semi-Static Source Data ISO Series Metadata

(fileIdentifier: f9d6db0-e4a6-11e5-a837-0800200c9a66
language: eng
code:
type: Solar Ultraviolet Imager - SUVI
description: The GOES-R Solar Ultraviolet Imager is a telescope that monitors the Sun in the extreme ultraviolet wavelength range. By observing the Sun, SUVI will be able to compile full disk solar images around the clock.

citation: (CI_Citation)
title: GOES-R L1b Processing Parameters
alternateTitle: Data short name (DSN): PARM-L1b-ISO-SERIES
date: (CI_Date)
date: 2017-05-15
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: Product Definition and Users Guide (PUG) Volume 1: Main)
Processing parameters are used as a direct input to the GOES-R ground processing algorithms. There are six categories of semi-static source data used in the Advanced Baseline Imager (ABI) Level 1b ground processing algorithm, 1) Coverage calibration parameters (associated with the location of the ABI in geostationary orbit, global reference ellipsoid used to geolocate raw and resampled ABI imagery, ABI’s field of regard, and instrument sensing rate), 2) Radiometric calibration parameters (associated with the instrument’s radiometric observing characteristics, or its raw outputs), 3) Calibration target parameters (associated with the calibration performed by the instrument during operations including the internal calibration (i.e., blackbody), and space, solar, and star looks), 4) Geometric calibration parameters (associated with resampling, and the related geolocating of raw and resampled instrument data), 5) Kalman filter calibration parameters (associated with the Kalman filter used to support geolocation of raw samples and resampled pixels), 6) Algorithm processing parameters (used during service initiation, the processing of science data and to format data in preparation for producing an end product). There are three categories of Solar Ultraviolet Imagery (SUVI) processing parameters, 1) Radiometric calibration parameters and images (associated with the instrument’s radiometric observing characteristics, or its raw outputs), 2) Geometric calibration parameters (associated with the precise look angle and size of the instrument’s field of view), 3) Algorithm processing parameters (associated with configurable decision-making logic in the algorithm related to data identification, data, time, and position thresholds, and conversion factors). There are three categories of Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) Solar Flux Extreme Ultraviolet processing parameters, 1) Sensor calibration parameters are used by the algorithms to calibrate the raw signals recorded by the instrument components into engineering units, 2) Solar calibration parameters are those associated with the distance, on a daily basis, between the earth and the sun, 3) Model processing parameters are those associated with the EUV spectrum proxy model. There are two categories of EXIS Solar Flux X-Ray processing parameters, 1) Sensor calibration parameters are those associated with the XRS and SPS sensors’ radiometric and geometric observing characteristics, its raw outputs, and the subsequent calibration related processing, 2) Solar calibration parameters are those associated with the distance, on a daily basis, between the earth and the sun. There are two categories of SEISS processing parameters, 1) Sensor calibration parameters are those associated with the sensor’s observing characteristics, or its raw outputs, 2) Algorithm processing parameters are those associated with configurable decision-making logic in the algorithm. Magnetometer uses four categories of processing parameters, 1) Factory calibration parameters are those associated with sensor and electronic temperature dependent, and alignment corrections required that were determined pre-launch, 2) On-orbit calibration
parameters are those that account for launch shift and in-flight drifts. These parameters are applied to the compensated (factory calibrated) magnetic field measurements. 3) Sensor calibration parameters are those associated with magnetometer hardware, valid telemetry ranges, and coordinate transformation matrices. 4) Algorithm processing parameters are those associated with the gradiometer model, and valid time and temperature thresholds.

pointOfContact: (CI_ResponsibleParty)
- **organisationName:** DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
- **address:** (CI_Address)
 - **deliveryPoint:** 1335 East-West Highway, SSMC1, 8th Floor
 - **city:** Silver Spring
 - **administrativeArea:** MD
 - **postalCode:** 20910
 - **country:** USA
 - **electronicMailAddress:** goes-r@noaa.gov

resourceFormat: (MD_Format)
- **name:** zip
- **version:**

descriptiveKeywords: (MD_Keywords)
- **keyword:** Earth Observation Satellites > GOES (Geostationary Operational Environmental Satellite) > GOES-R

thesaurusName: (CI_Citation)
- **title:** NASA Global Change Master Directory (GCMD) Earth Science Keywords
- **date:** (CI_Date)
 - **date:** 2012-10
 - **dateType:** (CI_DateTypeCode) revision
- **edition:** Version 7.0.0.0.0

citedResponsibleParty: (CI_ResponsibleParty)

resourceConstraints: (MD_SecurityConstraints)
- **useLimitation:** Unrestricted
- **classification:** (MD_ClassificationCode) unclassified

language: eng; USA
- **characterSet:** (MD_CharacterSetCode) utf8

topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere

extent: (EX_Extent)
- **temporalElement:** (EX_TemporalExtent)
 - **extent:**
 - **TimePeriod:**
 - **beginPosition:** 2017-05-15
metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently

4.2.5 Level 1b Algorithm Packages

(MI_Metadata)
fileName: 6c77a140-3769-11e3-aa6e-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for GOES-R L1b Algorithm Package Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ALG-L1b-ISO-SERIES_c20171311357000.xml

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: GOES-R L1b Algorithm Package
alternateTitle: Data short name (DSN): ALG-L1b-ISO-SERIES
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
Each Algorithm Package includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), and descriptive information. Each ATBD will include an overview, logic flow, assumptions, theoretical/math description, limitations, exception handling, inputs/outputs, and software implementation considerations.
Includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), for the following algorithms: Advanced Baseline Imager (ABI) Radiance Channel 1 through ABI Radiance Channel 16 algorithms. Also CDRL0080-1_ABI_GPA_Overview, CDRL0080-2_ABI_GPA_Decompression, CDRL0080-3_ABI_GPA_Calibration, CDRL0080-4_ABI_GPA_Navigation, CDRL0080-5_ABI_GPA_Resampler, CDRL0080-6_ABI_GPA_ScanCal. For EXIS, SUVI, MAG, GLM and SEISS the CDRL 80 - Algorithm documents are included.

Includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), and applicable CDRL documents for the following algorithm: Magnetometer (MAG).

Includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), and applicable CDRL documents for the following algorithm: Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS).

Includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), and applicable CDRL documents for the following algorithm: Space Environment In-Situ Suite (SEISS) sensors.

Includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), and applicable CDRL documents for the following algorithm: Solar Ultraviolet Imager (SUVI).
GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently.

5.0 LEVEL 2+ PRODUCT AND DATA ISO SERIES METADATA

5.1 Level 2+ Products

5.1.1 Cloud and Moisture Imagery Product ISO Series Metadata

(metadataMaintenance: (MD_MaintenanceInformation)
 maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
 maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently)

(spaces and characters discarded for readability)

(metadataMaintenance: (MD_MaintenanceInformation)
 maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
 maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently)

5.0 LEVEL 2+ PRODUCT AND DATA ISO SERIES METADATA

5.1 Level 2+ Products

5.1.1 Cloud and Moisture Imagery Product ISO Series Metadata

(fileIdentifier: 8e9e8150-3692-11e3-aa6e-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Cloud and Moisture Imagery Product Collection
contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ABI-L2-CMIP-ISO-SERIES_c20171311130000.xml

(spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 10848
resolution:
 Distance: 1
 axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 10848
resolution:
 Distance: 1
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk; ABI Channels 1, 3, 5

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 3000
resolution:
 Distance: 1
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 5000
resolution:
 Distance: 1
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS; ABI Channels 1, 3, 5

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 1000
resolution:
 Distance: 1
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 1000
resolution:
 Distance: 1
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale; Channels 1, 3, 5

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 21696
 resolution:
 Distance: 0.5
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 21696
 resolution:
 Distance: 0.5
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk; ABI Channel 2

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 6000
 resolution:
 Distance: 0.5
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 10000
 resolution:
 Distance: 0.5
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS; ABI Channels 2

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 2000
 resolution:
Distance: 0.5
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 2000
resolution:
 Distance: 0.5
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale; Channel 2

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 5424
resolution:
 Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 5424
resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk; ABI Channels 4 and 6 - 16

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 1500
resolution:
 Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 2500
resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS; ABI Channels 4 and 6 - 16

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 500
 resolution: Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale; Channels 4 and 6 - 16

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: Product Definition and Users Guide (PUG) Volume 5: Level 2 Products
 date: (CI_Date)
 date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.
 code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
 title: ABI Level 2+ Cloud and Moisture Imagery Product
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C01
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C02
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C03
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C04
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C05
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C06
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C07
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C08
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C09
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C10
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C11
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C12
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C13
alternateTitle: Data short name (DSN): ABI-L2-CMIPM1-M3C14
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C01
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C02
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C03
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C04
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C05
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C06
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C07
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C08
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C09
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C10
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C11
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C12
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C13
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C14
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C15
alternateTitle: Data short name (DSN): ABI-L2-CMIPM2-M3C16
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C01
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C02
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C03
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C04
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C05
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C06
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C07
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C08
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C09
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C10
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C11
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C12
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C13
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C14
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C15
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M3C16
alternateTitle: Data short name (DSN): ABI-L2-CMIPC-M4C01
abstract: The Cloud and Moisture Imagery product contains one or more Earth-view images with pixel values identifying “brightness values” that are scaled to support visual analysis. The product includes data quality information that provides an assessment of the cloud and moisture imagery data values for on-earth pixels. Cloud and Moisture Imagery product files are generated for each of the sixteen ABI reflective bands (channels 1 - 6 with wavelengths 0.47, 0.64, 0.87, 1.38, 1.61, 2.25 microns respectively) and emissive bands (channels 7 - 16 with wavelengths 3.89, 6.17, 6.93, 7.34, 8.44, 9.61, 10.33, 11.19, 12.27, 13.27 microns respectively). In addition, there is a multi-band product file where the imagery at all bands is included. The imagery value for the reflective bands, ABI bands 1 through 6, is a dimensionless “reflectance factor” quantity that is normalized by the solar zenith angle. These bands support the characterization of clouds, vegetation, snow/ice, and aerosols. The imagery value for the emissive bands, ABI bands 7 through 16, is the brightness temperature at the Top-Of-Atmosphere (TOA) in Kelvin. These bands support the characterization of the surface, clouds, water vapor, ozone, volcanic ash and dust based on emissive properties.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: ATMOSPHERE > ATMOSPHERIC RADIATION > REFLECTANCE
keyword: SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS > BRIGHTNESS TEMPERATURE
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: toa_lambertian_equivalent_albedo_multiplied_by_cosine_solar zenith_angle
keyword: toa_brightness_temperature
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance: Distance: .5
spatialResolution: (MD_Resolution)
distance: Distance: 1
spatialResolution: (MD_Resolution)
distance: Distance: 2
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8

topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere

extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East

geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West

geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East

geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West

geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
code: Mesoscale

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: CMI
 attributeType:
 descriptor: ABI Cloud and Moisture Imagery reflectance factor (channels 1 - 6)
 units:
 scaleFactor:
 offset:
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: CMI
 attributeType:
 descriptor: ABI Cloud and Moisture Imagery brightness temperature at top of atmosphere (channels 7 - 16)
 units:
 DerivedUnit:
 identifier: \(k\)
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Cloud and Moisture Imagery Product data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
nameOfMeasure: Product summary statistics
evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Solar radiance and irradiance values that vary as a function of the Earth-Sun distance and Planck constants used for cloud and moisture imagery correction; Number of geolocated pixels; Number of good and conditionally usable pixels; Number of cloud and moisture imagery pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the cloud and moisture imagery values in the product image. The cloud and moisture imagery outlier count and minimum, maximum, mean, and standard deviation values are calculated using good and conditionally usable quality pixels. The percentages of pixels assigned to each DQF value are also included in the product.
result:

report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:

report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:

lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The Cloud and Moisture product is generated by the GOES-R ABI Cloud and Moisture Imagery ground processing algorithm. Production of the reflective bands depends on the solar radiance at the Earth-Sun distance at the time of observation, and the solar zenith angle. The inverse of the solar radiance is represented by the “kappa0” variable in the product file. The dynamic range of the reflectance factor and brightness temperature output is not constrained by the algorithm but it is compared to the expected measurement range for each band based on the ABI’s dynamic range.

processor: (CI_ResponsibleParty)
organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
role: (CI_RoleCode)
output: (LE_Source)
description: Advanced Baseline Imager (ABI) L2 Cloud and Moisture Imagery data
are digital maps of clouds, moisture, and atmospheric windows, through which land and water are observed, from radiances for the visible, near-IR, and IR bands with associated per-pixel quality flag array. End-products are unique to an ABI scene (Full Disk, CONUS or Mesoscale) and ABI channel (1 - 16).

processedLevel: (MD_Identifier)

authority: (CI_Citation)

title: NOAA Processing Levels

date: (CI_Date)

date: 2013-11

dateType: (CI_DateTypeCode) revision

citedResponsibleParty: (CI_ResponsibleParty)

organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)

contactInfo: (CI_Contact)

onlineResource: (CI_OnlineResource)

linkage: https://www.ngdc.noaa.gov/wiki/index.php?title=NOAA_Processing_Levels

role: (CI_RoleCode) publisher

code: L2

metadataMaintenance: (MD_MaintenanceInformation)

maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded

maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)

operation: (MI_Operation)

description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60
seconds. The ABI is calibrated to an accuracy of 3% (1σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1σ) at 300K.

5.1.2 Clear Sky Mask Product ISO Series Metadata
Non-Export Controlled Information
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 1500
resolution:
 Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 2500
resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 500
resolution:
 Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 500
resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
authority: (CI_Citation)
title: GOES-R Product Definition and Users Guide (PUG) Volume 5: Level 2+

Products
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized
location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

codeSpace: http://cfconventions.org/latest.html
CONUS, and Mesoscale coverage regions. Product data is produced for geolocated source data to local zenith angles of 90 degrees for both daytime and nighttime conditions.

- **pointOfContact**: (CI_ResponsibleParty)
- **organisationName**: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
- **contactInfo**: (CI_Contact)
 - **address**: (CI_Address)
 - **deliveryPoint**: 1335 East-West Highway, SSMC1, 8th Floor
 - **city**: Silver Spring
 - **administrativeArea**: MD
 - **postalCode**: 20910
 - **country**: USA
 - **electronicMailAddress**: GOES-R@noaa.gov

- **role**: (CI_RoleCode) originator
- **resourceFormat**: (MD_Format)
 - **name**: netCDF
 - **version**: 4

- **descriptiveKeywords**: (MD_Keywords)
 - **keyword**: ATMOSPHERE > CLOUDS > CLOUD AMOUNT/FREQUENCY

- **thesaurusName**: (CI_Citation)
 - **title**: NASA Global Change Master Directory (GCMD) Earth Science Keywords

- **date**: (CI_Date)
 - **date**: 2012-10
 - **dateType**: (CI_DateTypeCode) revision

- **edition**: Version 7.0.0.0.0

- **citedResponsibleParty**: (CI_ResponsibleParty)

- **role**: (CI_RoleCode) author

- **descriptiveKeywords**: (MD_Keywords)
 - **keyword**: cloud_binary_mask

- **thesaurusName**: (CI_Citation)
 - **title**: CF Standard Name Table v25

- **date**: (CI_Date)
 - **date**: 2013-07-05
 - **dateType**: (CI_DateTypeCode) revision

- **resourceConstraints**: (MD_SecurityConstraints)
 - **useLimitation**: Unrestricted.

- **classification**: (MD_ClassificationCode) unclassified

- **spatialRepresentationType**: (MD_SpatialRepresentationTypeCode) grid

- **spatialResolution**: (MD_Resolution)
 - **distance**: Distance: 2

- **language**: eng; USA
characterSet: (MD_CharacterSetCode) utf8

topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere

extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East

geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West

geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East

geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West

geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
code: Mesoscale

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: BCM
 attributeType:
 descriptor: The Binary Cloud Mask (BCM) defines the detection of a cloud with a value of 1 for the mask otherwise the value of the mask is 0 for clear
 units:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) qualityInformation
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Clear Sky Mask data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of pixels and percentages of the intermediate 4-level cloud mask image having clear, probably clear, cloudy, and probably cloudy classifications; Applicable ABI emissive band-specific brightness temperature differences minimum, maximum, mean, and standard deviation values between those observed and modeled for all and clear sky conditions. These statistics are calculated using good quality pixels to a local zenith angle of 70 degrees. The percentages of pixels assigned to each DQF value are also included in the product.
 result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.

result: (DQ_QuantitativeResult)

valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:

report: (DQ_CompletenessOmission)

nameOfMeasure: percent_uncorrectable_GRB_errors

evaluationMethodDescription: percent data lost due to uncorrectable GRB errors

result: (DQ_QuantitativeResult)

valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:

lineage: (LI_Lineage)

processStep: (LE_ProcessStep)

description: The Clear Sky Mask product is generated by the GOES-R ABI Cloud Mask ground processing algorithm. The Cloud Mask algorithm is an important component of the GOES-R Level 2+ Algorithm Precedence Network, as the output of the algorithm is used in the generation of the GOES-R Cloud, Aerosol, Sounding, Land, Ocean, Radiation, and Wind products. The Clear Sky Mask product algorithm identifies clear, probably clear, cloudy, and probably cloudy conditions based on spectral, spatial, and temporal tests. The algorithm compares ABI emissive band data with processed clear sky and cloudy sky model data derived from the Community Radiative Transfer Model (CRTM).

processor: (CI_ResponsibleParty)

organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)

role: (CI_RoleCode) processor

output: (LE_Source)

processedLevel: (MD_Identifier)

authority: (CI_Citation)

title: NOAA Processing Levels

date: (CI_Date)

dateType: (CI_DateTypeCode) revision

citedResponsibleParty: (CI_ResponsibleParty)

organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)

contactInfo: (CI_Contact)

onlineResource: (CI_OnlineResource)

role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
- **maintenanceAndUpdateFrequency:** (MD_MaintenanceFrequencyCode) asNeeded
- **maintenanceNote:** ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
- **operation:** (MI_Operation)
 - **description:** The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
 - **identifier:** (MD_Identifier)
 - **authority:** (CI_Citation)
 - **title:** http://science.nasa.gov/missions/goes-r/
 - **date:**
 - **code:**
 - **status:** (MD_ProgressCode) onGoing

parentOperation:
- **platform:** (MI_Platform)
 - **identifier:** (MD_Identifier)
 - **authority:** (CI_Citation)
 - **title:** http://www.goes-r.gov
 - **date:**
 - **code:** GOES-East (G16)
 - **description:** The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and
XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.
Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.3 Cloud Top Phase Product ISO Series Metadata

```
(MI_Metadata)
  fileIdentifier: 1f205b40-afd3-11e1-afa6-0800200c9a66
  language: eng
  characterSet: (MD_CharacterSetCode) utf8
  parentIdentifier: n/a
  hierarchyLevel: (MD_ScopeCode) series
  hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Cloud Top Phase Product Collection
  contact: (CI_ResponsiveParty)
    organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
  contactInfo: (CI_Contact)
    address: (CI_Address)
      deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
```
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_ABI-L2-CTP-ISO-SERIES_c20171311132000.xml

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 5424
 resolution: Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 5424
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1500
 resolution: Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2500
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 500
 resolution:
 Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: GOES-R Product Definition and Users Guide (PUG) Volume 5: Level 2+

Products
date: (CI_Date)
 date: 2014
dateType: (CI_DateTypeCode) publication

otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.
code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
 title: ABI Level 2+ Cloud Top Phase Product
 alternateTitle: Data short name (DSN): ABI-L2-ACTPM1-M3
 alternateTitle: Data short name (DSN): ABI-L2-ACTPM2-M3
abstract: The Cloud Top Phase product contains an image with pixel values identifying the presence of cloud in four phase categories. The categories, which are consistent with heritage NOAA and NASA cloud products, include: Warm liquid water: liquid water cloud with an opaque cloud temperature greater than 273 degrees K; Supercooled liquid water: liquid water topped cloud with an opaque cloud temperature less than 273 degrees K; Mixed phase clouds: high probability of containing both liquid water and ice near cloud top; Ice phase clouds: all ice topped clouds. The Cloud Top Phase product image data variable also has categories for clear sky and unknown phases. A pixel is classified as having an unknown phase when the retrieval has failed because of missing or bad input data. The product includes data quality information that provides an assessment of the cloud top phase data values for on-earth pixels. The cloud top phase value is a dimensionless quantity which is provided at 2 km resolution on the ABI fixed grid for Full Disk, CONUS, and Mesoscale coverage regions. Product data is produced for geolocated source data to local zenith angles of 90 degrees for both daytime and nighttime conditions.
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: ATMOSPHERE > CLOUDS > CLOUD LIQUID WATER/ICE
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: cloud_phase_category
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted.
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance:
Distance: 2
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
TimePeriod:
beginPosition: 2017-05-11
endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Mesoscale
contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
aName: Phase
attributeType:
descriptor: ABI Level 2+ Cloud Top Phase
units:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF
attributeType:
descriptor: ABI Level 2+ Cloud Top Phase data quality flags
units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
nameOfMeasure: Product summary statistics
evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Percentage of pixels in each of the phase category; Number of cloudy pixels in the image. These statistics are calculated using geolocated pixels. The percentages of pixels assigned to each DQF value are also included in the product.
result:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:

result:

result:

result:

result:

result:
The Cloud Top Phase product is generated by the GOES-R ABI Cloud Type ground processing algorithm. The algorithm determines the cloud top phase for pixels identified as cloudy, probably cloudy, and probably clear in the intermediate 4-level cloud mask generated by the Cloud Mask algorithm. Clear sky is determined using clear pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm.

Metadata:
- **BaseUnit:** identifier: percent unitsSystem: value:
- **lineage:** (LI_Lineage)
- **processStep:** (LE_ProcessStep)
- **description:** The Cloud Top Phase product is generated by the GOES-R ABI Cloud Type ground processing algorithm. The algorithm determines the cloud top phase for pixels identified as cloudy, probably cloudy, and probably clear in the intermediate 4-level cloud mask generated by the Cloud Mask algorithm. Clear sky is determined using clear pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm.

Processor:
- **organisationName:** NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
- **role:** processor
- **output:** (LE_Source)
- **processedLevel:** (MD_Identifier)
- **authority:** (CI_Citation)
 - **title:** NOAA Processing Levels
 - **date:** (CI_Date)
 - **date:** 2013-11
 - **dateType:** (CI_DateTypeCode) revision
 - **citedResponsibleParty:** (CI_ResponsibleParty)
 - **organisationName:** National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
 - **contactInfo:** (CI_Contact)
 - **onlineResource:** (CI_OnlineResource)
 - **linkage:** https://www.ngdc.noaa.gov/wiki/index.php?title=NOAA_Processing_Levels
- **role:** (CI_RoleCode) publisher
- **code:** L2

Maintenance:
- **metadataMaintenance:** (MD_MaintenanceInformation)
- **maintenanceAndUpdateFrequency:** (MD_MaintenanceFrequencyCode) asNeeded
- **maintenanceNote:** ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

Acquisition:
- **acquisitionInformation:** (MI_AcquisitionInformation)
- **operation:** (MI_Operation)
 - **description:** The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes.
The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGong
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth’s surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov

date:

code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov/spacesegment/abi.html

date:

code: GOES-17 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions
between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.4 Cloud Top Height Product ISO Series Metadata

```
(ML_Metadata)
  fileIdentifier: 4571d650-b00c-11e1-afa6-0800200c9a66
  language: eng
  characterSet: (MD_CharacterSetCode) utf8
  parentIdentifier: n/a
  hierarchyLevel: (MD_ScopeCode) series
  hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Cloud Top Height Product
  contact: (CI_ResponsibleParty)
    organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
    contactInfo: (CI_Contact)
      address: (CI_Address)
        deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
        city: Silver Spring
        administrativeArea: MD
        postalCode: 20910
        country: USA
        electronicMailAddress: GOES-R@noaa.gov
      role: (CI_RoleCode) originator
  dateStamp: 2017-05-11
  metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
  dataSetURI: OR_ABI-L2-ACHA-ISO-SERIES_c20171311133000.xml

  spatialRepresentationInfo: (MD_Georectified)
    numberOfDimensions: 2
    axisDimensionProperties: (MD_Dimension)
      dimensionName: (MD_DimensionNameTypeCode) row
      dimensionSize: 1086
    resolution:
```
Distance: 10
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 1086
 resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 300
 resolution:
 Distance: 10
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 250
 resolution:
 Distance: 4
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 250
 resolution:
 Distance: 4
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection

codeSpace: http://cfconventions.org/latest.html
The Cloud Top Height product contains an image with pixel values identifying the geopotential height at the top of a cloud layer. The product is generated in combination with the Cloud Top Temperature and Cloud Top Pressure products by the same algorithm. The product includes data quality information that provides an assessment of the cloud top height data values for on-earth pixels. The units of measure for the cloud top height value is meters. The Cloud Top Height product image is produced on the ABI fixed grid (at 10 km for Full Disk and CONUS coverage regions and at 4km for Mesoscale) under the following conditions: Cloudy; Geolocated source data to local zenith angles of 70 degrees for both daytime and nighttime conditions.
thesaurusName: (CI_Citation)
 title: CF Standard Name Table v25
 date: (CI_Date)
 date: 2013-07-05
 dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted.
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
 distance: Distance: 10
spatialResolution: (MD_Resolution)
 distance: Distance: 4
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod: beginPosition: 2017-05-11
 extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
eastBoundLongitude: 6.2995
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
eastBoundLongitude: -55.7005
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
eastBoundLongitude: -52.946879
southBoundLatitude: 14.571340
northBoundLatitude: 56.761450

extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
gеographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Mesoscale

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: HT
 attributeType:
 descriptor: ABI Level 2+ Cloud Top Height
 units:
 DerivedUnit:
 identifier: m
derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Cloud Top Height Product data quality flags
units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)

nameOfMeasure: Product summary statistics

evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of cloudy or probably cloud pixels that qualify for the algorithm retrieval; Number of cloud top height pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the cloud top height values in the product image. These statistics are calculated using good quality pixels. The percentages of pixels assigned to each DQF value are also included in the product.

result:

report: (DQ_CompletenessOmission)

nameOfMeasure: percent_uncorrectable_L0_errors

evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.

result: (DQ_QuantitativeResult)

valueUnit:

BaseUnit:

identifier: percent

unitsSystem:

value:

report: (DQ_CompletenessOmission)

nameOfMeasure: percent_uncorrectable_GRB_errors

evaluationMethodDescription: percent data lost due to uncorrectable GRB errors

result: (DQ_QuantitativeResult)

valueUnit:

BaseUnit:

identifier: percent

unitsSystem:

value:

lineage: (LI_Lineage)

processStep: (LE_ProcessStep)

description: The Cloud Top Temperature, Cloud Top Pressure, and Cloud Top Height products are generated by the GOES-R ABI Cloud Top Height ground processing algorithm. The Cloud Top Height algorithm is an important component of the GOES-R ground processing precedence chain as the output of the algorithm is used in the generation of other ABI Level 2+ products. The algorithm retrieves a state vector composed of cloud top temperature, channel 14 emissivity, and band 15/14 beta ratio. It is retrieved using an optimal estimation technique. Cloud top pressure and height are then derived from cloud top temperature. The channel 14 emissivity and band 15/14 beta ratio are output as intermediate products. Pixels in the product image with out of range values are assigned the minimum or maximum value in the valid range. Cloudy conditions are determined using cloudy and probably cloudy pixels indicated in the temporally
coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. The Cloud Top Height algorithm operates on 2 km resolution pixels, generating intermediate temperature, pressure, and height products at this resolution, but the delivered Cloud Top Height and Pressure products are aggregated to 4 km or 10 km as needed to satisfy end user product resolution requirements.

```
processor: (CI_ResponsibleParty)
    organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
    role: (CI_RoleCode) processor
output: (LE_Source)
processedLevel: (MD_Identifier)
authority: (CI_Citation)
    title: NOAA Processing Levels
    date: (CI_Date)
        date: 2013-11
        dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
    organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
    onlineResource: (CI_OnlineResource)
role: (CI_RoleCode) publisher
code: L2
```
Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to
The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov

date:

code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov/spacesegment/abi.html

date:

code: GOES-17 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6
scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.5 Cloud Top Pressure Product ISO Series Metadata

(MI_Metadata)

fileIdentifier: aa36b140-b00d-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Cloud Top Pressure Product Collection
contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_ABI-L2-CTP-ISO-SERIES_c20171311300000.xml

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 1086
resolution:
 Distance: 10
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 1086
resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 300
resolution:
 Distance: 10
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 500
resolution:
 Distance: 10

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
authority: (CI_Citation)
title: Product Definition and Users Guide (PUG) Volume 5: Level 2 Products
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Cloud Top Pressure Product
alternateTitle: Data short name (DSN): ABI-L2-CTPC-M3
alternateTitle: Data short name (DSN): ABI-L2-CTPC-M4
alternateTitle: Data short name (DSN): ABI-L2-CTPF-M3
alternateTitle: Data short name (DSN): ABI-L2-CTPF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-CTP*
citedResponsibleParty: (CI_ResponsibleParty)
orGANisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator

abstract: The Cloud Top Pressure product contains an image with pixel values identifying the atmospheric pressure at the top of a cloud layer. The product is generated in combination with the Cloud Top Height and Cloud Top Temperature products by the same algorithm. The product includes data quality information that provides an assessment of the cloud top height data values for on-earth pixels. The units of measure for the cloud top pressure value is hectopascals. The Cloud Top Pressure product image is produced on the ABI fixed grid (at 10 km for Full Disk and CONUS coverage regions) under the following conditions: Cloudy; Geolocated source data to local zenith angles of 70 degrees for both daytime and nighttime conditions.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
 name: netCDF
 version: 4
descriptiveKeywords: (MD_Keyword)
 keyword: ATMOSPHERE > CLOUDS > CLOUD TOP PRESSURE
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
dateType: (CI_DateTypeCode) revision
edition: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
date: (CI_Date)
 date: 2013-07-05
 dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted.
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_SpatialResolution)
 distance: Distance: 10
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282

dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: PRES
attributeType:
dercriptor: ABI Level 2+ Cloud Top Pressure
units:
DerivedUnit:
identifier: hPa
derivationUnitTerm:
derivationUnitTerm:
scaleFactor:
offset:

```
contentInfo: (MI_CoverageDescription)
attributeDescription: 
  RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
  sequenceIdentifier:
    MemberName:
      aName: DQF
    attributeType:
      descriptor: ABI Level 2+ Cloud Top Pressure data quality flags
      units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
  level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
  nameOfMeasure: Product summary statistics
  evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of cloudy or probably cloud pixels that qualify for the algorithm retrieval; Number of cloud top pressure pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the cloud top pressure values in the product image. These statistics are calculated using good quality pixels. The percentages of pixels assigned to each DQF value are also included in the product.
  result: 
    report: (DQ_CompletenessOmission)
      nameOfMeasure: percent_uncorrectable_L0_errors
      evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
      result: (DQ_QuantitativeResult)
        valueUnit: BaseUnit:
          identifier: percent
          unitsSystem:
        value:
      report: (DQ_CompletenessOmission)
        nameOfMeasure: percent_uncorrectable_GRB_errors
        evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
        result: (DQ_QuantitativeResult)
          valueUnit: BaseUnit:
            identifier: percent
            unitsSystem:
```
The Cloud Top Temperature, Cloud Top Pressure, and Cloud Top Height products are generated by the GOES-R ABI Cloud Top Height ground processing algorithm. The Cloud Top Height algorithm is an important component of the GOES-R ground processing precedence chain as the output of the algorithm is used in the generation of other ABI Level 2+ products. The algorithm retrieves a state vector composed of cloud top temperature, channel 14 emissivity, and band 15/14 beta ratio. It is retrieved using an optimal estimation technique. Cloud top pressure and height are then derived from cloud top temperature. The channel 14 emissivity and band 15/14 beta ratio are output as intermediate products. Pixels in the product image with out of range values are assigned the minimum or maximum value in the valid range. Cloudy conditions are determined using cloudy and probably cloudy pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. The Cloud Top Height algorithm operates on 2 km resolution pixels, generating intermediate temperature, pressure, and height products at this resolution, but the delivered Cloud Top Height and Pressure products are aggregated to 4 km or 10 km as needed to satisfy end user product resolution requirements.
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:

code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornadoes). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.6 Cloud Top Temperature Product ISO Series Metadata

(fileIdentifier: 8c98eff0-afda-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Cloud Top Temperature Product
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ABI-L2-ACHT-ISO-SERIES_c20171311300000.xml

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 5424
 resolution: Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 5424
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 500
 resolution: Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: GOES-R Product Definition and Users Guide (PUG)
 date: (CI_Date)
 date: 2014
The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Cloud Top Temperature Product
alternateTitle: Data short name (DSN): ABI-L2-ACHTM1-M3
alternateTitle: Data short name (DSN): ABI-L2-ACHTM2-M3
alternateTitle: Data short name (DSN): ABI-L2-ACHTF-M3
alternateTitle: Data short name (DSN): ABI-L2-ACHTF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-ACHT*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The Cloud Top Temperature product contains an image with pixel values identifying the atmospheric temperature at the top of a cloud layer. The product is generated in combination with the Cloud Top Height and Cloud Top Pressure products by the same algorithm. The product includes data quality information that provides an assessment of the cloud top height data values for on-earth pixels. The units of measure for the cloud top temperature value is kelvin.
The Cloud Top Temperature product image is produced on the ABI fixed grid at 2 km resolution for Full Disk and Mesoscale coverage regions. Product data is produced under the following conditions: cloudy; Geolocated source data to local zenith angles of 70 degrees for both daytime and nighttime conditions.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov

role: (CI_RoleCode) originator

resourceFormat: (MD_Format)
name: netCDF
version: 4

descriptiveKeywords: (MD_Keywords)
keyword: ATMOSPHERE > CLOUDS > CLOUD TOP TEMPERATURE
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author

descriptiveKeywords: (MD_Keywords)
keyword: air_temperature_at_cloud_top
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision

resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted.
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance:
Distance: 2
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Mesoscale

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: TEMP
attributeType:
descriptor: ABI Level 2+ Cloud Top Temperature
units:
 DerivedUnit:
 identifier: k
derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Cloud Top Temperature data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of cloudy or probably cloud pixels that qualify for the algorithm retrieval; Number of cloud top temperature pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the cloud top temperature values in the product image. These statistics are calculated using good quality pixels. The percentages of pixels assigned to each DQF value are also included in the product.
 result: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 result: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_GRB_errors
 evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
The Cloud Top Temperature, Cloud Top Pressure, and Cloud Top Height products are generated by the GOES-R ABI Cloud Top Height ground processing algorithm. The Cloud Top Height algorithm is an important component of the GOES-R ground processing precedence chain as the output of the algorithm is used in the generation of other ABI Level 2+ products. The algorithm retrieves a state vector composed of cloud top temperature, channel 14 emissivity, and band 15/14 beta ratio. It is retrieved using an optimal estimation technique. Cloud top pressure and height are then derived from cloud top temperature. The channel 14 emissivity and band 15/14 beta ratio are output as intermediate products. Pixels in the product image with out of range values are assigned the minimum or maximum value in the valid range. Cloudy conditions are determined using cloudy and probably cloudy pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. The Cloud Top Height algorithm operates on 2 km resolution pixels, generating intermediate temperature, pressure, and height products at this resolution, but the delivered Cloud Top Height and Pressure products are aggregated to 4 km or 10 km as needed to satisfy end user product resolution requirements.
acquisitionInformation: (MI_AcquisitionInformation)
operation: (MIOperation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:

code: status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov

date:
code: GOES-East (G16)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth’s surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and
the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
 title: http://www.goes-r.gov/spacesegment/abi.html
 date:
 code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
 title: http://www.goes-r.gov
 date:
 code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
 title: http://www.goes-r.gov/spacesegment/abi.html
date: 08 March 2019

code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.7 Cloud Optical Depth ISO Series Metadata

(fileIdentifier: 49b3d350-afec-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Cloud Optical Depth Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ABI-L2-COD-ISO-SERIES_c20171311132000.xml
spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 2712
 resolution:
 Distance: 4
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2712
 resolution:
 Distance: 4
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkpointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1500
 resolution:
 Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2500
 resolution:
 Distance: 2
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkpointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: CONUS

referenceSystemInfo: (MD_ReferenceSystem)
 referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: Product Definition and Users Guide (PUG) Volume 5: Level 2 Products
 date: (CI_Date)
 date: 2014
 dateType: (CI_DateTypeCode) publication
 otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products
are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for
geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized
location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from
a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the
same location on the earth. All of the dynamics associated with an orbiting satellite are removed
to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized
geostationary position.

\textbf{code}: goes_projection
\textbf{codeSpace}: http://cfconventions.org/latest.html

<table>
<thead>
<tr>
<th>identificationInfo: (MD_DataIdentification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{citation}: (CI_Citation)</td>
</tr>
<tr>
<td>\textbf{title}: ABI Level 2+ Cloud Optical Depth Product</td>
</tr>
<tr>
<td>\textbf{alternateTitle}: Data short name (DSN): ABI-L2-CODC-M3</td>
</tr>
<tr>
<td>\textbf{alternateTitle}: Data short name (DSN): ABI-L2-CODC-M34</td>
</tr>
<tr>
<td>\textbf{alternateTitle}: Data short name (DSN): ABI-L2-CODF-M3</td>
</tr>
<tr>
<td>\textbf{alternateTitle}: Data short name (DSN): ABI-L2-CODF-M4</td>
</tr>
<tr>
<td>\textbf{date}: (CI_Date)</td>
</tr>
<tr>
<td>\textbf{date}: 2017-05-11</td>
</tr>
<tr>
<td>\textbf{dateType}: (CI_DateTypeCode) creation</td>
</tr>
<tr>
<td>\textbf{identifier}: (MD_Identifier)</td>
</tr>
<tr>
<td>\textbf{authority}: (CI_Citation)</td>
</tr>
<tr>
<td>\textbf{title}: gov.nesdis.noaa</td>
</tr>
<tr>
<td>\textbf{date}: (CI_Date)</td>
</tr>
<tr>
<td>\textbf{date}: 2014</td>
</tr>
<tr>
<td>\textbf{dateType}: (CI_DateTypeCode) revision</td>
</tr>
<tr>
<td>\textbf{code}: ABI-L2-COD*</td>
</tr>
<tr>
<td>\textbf{citedResponsibleParty}: (CI_ResponsibleParty)</td>
</tr>
</tbody>
</table>
| \textbf{organisationName}: DOC/NOAA/NESSDIS > National Environmental Satellite, Data,
and Information Services, NOAA, U.S. Department of Commerce |
| \textbf{contactInfo}: (CI_Contact) |
| \textbf{address}: (CI_Address) |
| \textbf{deliveryPoint}: 1335 East-West Highway, SSMC1, 8th Floor |
| \textbf{city}: Silver Spring |
| \textbf{administrativeArea}: MD |
| \textbf{postalCode}: 20910 |
| \textbf{country}: USA |
| \textbf{electronicMailAddress}: goes-r@noaa.gov |
| \textbf{role}: (CI_RoleCode) originator |
| \textbf{abstract}: The Cloud Optical Depth product contains an image with pixel values identifying
the measure of the extinction due to condensed water or ice clouds at a wavelength of 0.64 um.
Separate algorithms are used for daytime, solar zenith angle to 82 degrees, and nighttime, solar
zenith angle greater than 82 degrees, conditions. The product is generated in combination with the
Cloud Particle Size product by the same algorithms. The product includes data quality
information that identifies whether the daytime or nighttime algorithm generated the pixel, and
provides an assessment of the cloud optical depth data values for on-earth pixels. The cloud
optical depth value is a dimensionless quantity. The Cloud Optical Depth product image is produced on the ABI fixed grid at 4 km resolution for Full Disk and 2 km resolution for CONUS coverage regions. Product data is produced under the following conditions for the daytime algorithm: Cloudy; Geolocated source data to local zenith angles of 65 degrees and to solar zenith angles of 82 degrees. Product data generated by the nighttime algorithm is produced under the following conditions: Cloudy; Geolocated source data to local zenith angles of 70 degrees and solar zenith angles between 82 and 180 degrees. The cloud optical depth values reported range from 0 to 160. The sensitivity of the product to high optical depths is limited for nighttime conditions to the nighttime maximum threshold, which is an optical depth value of 16. Cloud Optical Depth product data is identified as degraded in the terminator region, which is a solar zenith angle between 65 and 82 degrees for the daytime algorithm, and 82 and 90 degrees for the nighttime algorithm.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: ATMOSPHERE > CLOUDS > CLOUD OPTICAL DEPTH/THICKNESS
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: atmosphere_optical_thickness_due_to_cloud
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted.
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance:
 Distance: 2
spatialResolution: (MD_Resolution)
distance:
 Distance: 4
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: -156.2995
eastBoundLongitude: 6.2995
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: 141.7005
eastBoundLongitude: -55.7005
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: -152.109282
eastBoundLongitude: -52.946879
southBoundLatitude: 14.571340
northBoundLatitude: 56.761450
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: COD
 attributeType:
 descriptor: ABI L2+ Cloud Optical Depth at 640 nm
 units:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI L2+ Cloud Optical Depth data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of good or degraded cloud optical depth pixels for both day and night; Percentage of daytime, nighttime, and twilight pixels in the product image (solar zenith
angles 0 to 65, 90 to 180, and 65 to 90 degrees, respectively); Number of cloud optical depth pixels whose values are outside the required measurement range for both the daytime (1 to 50) and nighttime (1 to 8) algorithms; Minimum, maximum, mean, and standard deviation of the cloud optical depth values in the product image for both the daytime and nighttime algorithms. The daytime and nighttime statistics are calculated using pixels to a daytime solar zenith angle of 82 degrees, except for the percent day, night, and twilight statistics that are based on more restrictive day, night, and twilight solar zenith angle ranges. Percentage of daytime, nighttime, and twilight pixels in the image are calculated using geolocated pixels. The other statistics are calculated using good and degraded pixels to a local zenith angle of 65 degrees. The statistics for the image are not restricted to the measurement range specified in the performance requirements. The percentages of pixels assigned to each DQF value are also included in the product.

result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit: percent
 unitsSystem: percent
 value:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_GRB_errors
 evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit: percent
 unitsSystem: percent
 value:
 lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: The Cloud Optical Depth and Cloud Particle Size products are generated by the GOES-R ABI Cloud Microphysical and Optical Properties (COMP) ground processing algorithms for daytime and nighttime. The daytime algorithm employs a physical retrieval based on theoretically computed lookup tables while the nighttime retrieval employs the Community Radiative Transfer Model (CRTM) calculations in an iterative physical retrieval that seeks to minimize the difference between the compute TOA brightness temperature and the observations. The algorithm processes the data pixel-by-pixel, choosing to use the daytime or nighttime approach based on the solar zenith angle threshold value of 82 degrees. The two approaches use different criteria to identify candidate cloudy pixels. The daytime algorithm processes pixels that are identified as cloudy or probably cloudy in the intermediate 4-level cloud mask. In addition to the intermediate 4-level cloud mask, the nighttime algorithm processes pixels based on the intermediate cloud type product data that is generated by the Cloud Type algorithm. The nighttime processing occurs for any pixel that is identified as cloudy, probably cloudy, or
probably clear in the intermediate 4-level cloud mask. However, because the nighttime retrieval
requires cloud top temperature product data as input, which is generated only for cloudy, and
probably cloudy pixels, the nighttime cloud optical depth and particle size are flagged as invalid
for pixels identified anywhere the cloud top temperature is invalid. Pixels in the product image
with out of range values are assigned the minimum or maximum value in the valid range. The
daytime algorithm is limited to local zenith angles below a threshold of 65 degrees. The nighttime
algorithm produces degraded quality product data beyond the local zenith angle limit. However,
because of the dependency on cloud top temperature, a valid product is restricted to the local
zenith angle range for the Cloud Top Temperature product of 70 degrees. The product is
generated for all solar zenith angles but is flagged as degraded in the twilight region where the
solar zenith angle is between 65 and 82 degrees for the daytime algorithm, and between 82 and 90
degrees for the nighttime algorithm. The Cloud Optical and Microphysical Properties algorithm
operates on 2 km pixels, generating an intermediate product at this resolution, but the delivered
Cloud Optical Depth product is aggregated to 4 km for the Full Disk coverage region.

processor: (CI_ResponsibleParty)
 organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
 role: (CI_RoleCode) processor
output: (LE_Source)
processedLevel: (MD_Identifier)
 authority: (CI_Citation)
 title: NOAA Processing Levels
 date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
 citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: National Oceanographic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
 onlineResource: (CI_OnlineResource)
role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a
collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R)
is the United States Government geostationary weather satellite series having an operational life-
cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the
GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:

code: GOES-16 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornadoes). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov

date:

code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov/spacesegment/abi.html

date:

code: GOES-17 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16
different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.8 Cloud Particle Size Distribution Product ISO Series Metadata

(MI_Metadata)

fileIdentifier: 964f0910-afe1-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Cloud Particle Size Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_ABI-L2-CPS-ISO-SERIES_c20171311132000.xml

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 5424
resolution:
 Distance: 2

axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 5424
 resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area

transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1500
 resolution:
 Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2500
 resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 500
 resolution:
 Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: Product Definition and Users Guide (PUG) Volume 5: Level 2 Products
 date: (CI_Date)
 date: 2014
 dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.
code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
 title: ABI Level 2+ Cloud Particle Size Product
alternateTitle: Data short name (DSN): ABI-L2-CPSM1-M3
alternateTitle: Data short name (DSN): ABI-L2-CPSM2-M3
alternateTitle: Data short name (DSN): ABI-L2-CPSC-M3
alternateTitle: Data short name (DSN): ABI-L2-CPSC-M4
alternateTitle: Data short name (DSN): ABI-L2-CPSF-M3
alternateTitle: Data short name (DSN): ABI-L2-CPSF-M4
date: (CI_Date)
 date: 2017-05-11
 dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: gov.nesdis.noaa
 date: (CI_Date)
 date: 2014
 dateType: (CI_DateTypeCode) publication
code: ABI-L2-CPS*
citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
The Cloud Particle Size product contains an image with pixel values identifying a measure of the effective radius of the particles in a single cloud layer. It is defined by the ratio of the third and second moment of the particle size distribution. Separate algorithms are used for daytime, solar zenith angle to 82 degrees, and nighttime, solar zenith angle greater than 82 degrees, conditions. The product is generated in combination with the Cloud Optical Depth product by the same algorithms. The product includes data quality information that identifies whether the daytime or nighttime algorithm generated the pixel, and provides an assessment of the cloud particle size data values for on-earth pixels. The units of measure for the cloud particle size value is microns. Product data is produced under the following conditions for the daytime algorithm: Cloudy; Geolocated source data to local zenith angles of 65 degrees and to solar zenith angles of 82 degrees. Product data generated by the nighttime algorithm is produced under the following conditions: Cloudy; Geolocated source data to local zenith angles of 70 degrees and solar zenith angles between 82 and 180 degrees. The cloud particle size values reported range from 0 to 100 um. However, the size range depends on day/night conditions and the liquid/ice water phase. Cloud Particle Size product data is identified as degraded in the terminator region, which is a solar zenith angle between 65 and 82 degrees for the daytime algorithm, and 82 and 90 degrees for the nighttime algorithm. The measurement range for Cloud Particle Size is determined by the model parameterization used in the algorithm retrieval. For daytime retrievals, the effective radius is determined by the lookup table bounds, 100.4 to 102.0, corresponding to 2.51 to 100 um, for both liquid and ice clouds. For nighttime retrievals, the effective radius is determined by the range of particle size models considered: 2 to 32 um for water clouds, and; 2.62 to 78.15 um for ice clouds where the retrieval of particle size diameter is related to the effective radius by a quadratic equation.
descriptiveKeywords: (MD_Keywords)
 keyword: ATMOSPHERE > CLOUDS > DROPLET CONCENTRATION/SIZE
 type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
 date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
 edition: Version 7.0.0.0
 citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
 keyword: effective_radius_of_cloud_condensed_water_particles_at_cloud_top
 type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: CF Standard Name Table v25
 date: (CI_Date)
 date: 2013-07-05
 dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted.
 classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
 distance:
 Distance: 2
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Mesoscale
contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: PSD
 attributeType:
 descriptor: ABI L2+ Cloud Particle Size
 units:
 DerivedUnit:
 identifier: um
 derivationUnitTerm:
 scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) qualityInformation
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Cloud Particle Size data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of good or degraded cloud particle size pixels for both day and night; Percentage of daytime, nighttime, and twilight pixels in the product image (solar zenith angles 0 to 65, 90 to 180, and 65 to 90 degrees, respectively); Number of cloud particle size pixels whose values are outside the required measurement range for both the daytime and nighttime algorithms (liquid: 2 to 32 um; ice 2 to 50 um); Minimum, maximum, mean, and standard deviation of the cloud particle size values in the product image for both the daytime and nighttime algorithms. The daytime and nighttime statistics are calculated using pixels to a daytime solar zenith angle of 82 degrees, except for the percent day, night, and twilight statistics that are based on more restrictive day, night, and twilight solar zenith angle ranges. Percentage of daytime, nighttime, and twilight pixels in the image are calculated using geolocated pixels. The other statistics are calculated using good and degraded pixels to a local zenith angle of 65 degrees. The statistics for the image are not restricted to the measurement range specified in the performance requirements. The percentages of pixels assigned to each DQF value are also included in the product.
 result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:

NON-Export Controlled Information
The Cloud Optical Depth and Cloud Particle Size products are generated by the GOES-R ABI Cloud Microphysical and Optical Properties (COMP) ground processing algorithms for daytime and nighttime. The daytime algorithm employs a physical retrieval based on theoretically computed lookup tables while the nighttime retrieval employs the Community Radiative Transfer Model (CRTM) calculations in an iterative physical retrieval that seeks to minimize the difference between the compute TOA brightness temperature and the observations. The algorithm processes the data pixel-by-pixel, choosing to use the daytime or nighttime approach based on the solar zenith angle threshold value of 82 degrees. The two approaches use different criteria to identify candidate cloudy pixels. The daytime algorithm processes pixels that are identified as cloudy or probably cloudy in the intermediate 4-level cloud mask. In addition to the intermediate 4-level cloud mask, the nighttime algorithm processes pixels based on the intermediate cloud type product data that is generated by the Cloud Type algorithm. The nighttime processing occurs for any pixel that is identified as cloudy, probably cloudy, or probably clear in the intermediate 4-level cloud mask. However, because the nighttime retrieval requires cloud top temperature product data as input, which is generated only for cloudy, and probably cloudy pixels, the nighttime cloud optical depth and particle size are flagged as invalid for pixels identified anywhere the cloud top temperature is invalid. Pixels in the product image with out of range values are assigned the minimum or maximum value in the valid range. The daytime algorithm is limited to local zenith angles below a threshold of 65 degrees. The nighttime algorithm produces degraded quality product data beyond the local zenith angle limit. However, because of the dependency on cloud top temperature, a valid product is restricted to the local zenith angle range for the Cloud Top Temperature product of 70 degrees. The product is generated for all solar zenith angles but is flagged as degraded in the twilight region where the solar zenith angle is between 65 and 82 degrees for the daytime algorithm, and between 82 and 90 degrees for the nighttime algorithm. The Cloud Optical and Microphysical Properties algorithm operates on 2 km pixels, generating an intermediate product at this resolution, but the delivered Cloud Optical Depth product is aggregated to 4 km for the Full Disk coverage region.

processor: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)

organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
onlineResource: (CI_OnlineResource)
role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
\n\ncode:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov

date:

code: GOES-East (G16)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth's weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
5.1.9 Aerosol Detection Product ISO Series Metadata

(fileIdentifier: 258cad90-af4b-11e1-afa6-0800200c9a66
language: eng
characterSet: utf8
parentIdentifier: n/a
hierarchyLevel: series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Aerosol Detection Product Collection
contact: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: contact
address: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_ABI-L2-ADP-ISO-SERIES_c20171311129000.xml

spatialRepresentationInfo: Full Disk

numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: row
 dimensionSize: 5424
 resolution:
 Distance: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: column
 dimensionSize: 5424
 resolution:
 Distance: 2

 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: upperLeft
 transformationDimensionDescription: Full Disk
spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1500
 resolution:
 Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2500
 resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 500
 resolution:
 Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: Product Definition and Users Guide (PUG) Volume 5: Level 2 Products
date: (CI_Date)
 date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for
geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection

codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DatadIdentification)

citation: (CI_Citation)

title: ABI Level 2+ Aerosol Detection Product

alternateTitle: Data short name (DSN): ABI-L2-ADPM1-M3

alternateTitle: Data short name (DSN): ABI-L2-ADPM2-M3

alternateTitle: Data short name (DSN): ABI-L2-ADPC-M3

alternateTitle: Data short name (DSN): ABI-L2-ADPC-M4

alternateTitle: Data short name (DSN): ABI-L2-ADPF-M3

alternateTitle: Data short name (DSN): ABI-L2-ADPF-M4

date: (CI_Date)

date: 2017-05-11

dateType: (CI_DateTypeCode) creation

identifier: (MD_Identifier)

authority: (CI_Citation)

title: gov.nesdis.noaa

date: (CI_Date)

date: 2014

dateType: (CI_DateTypeCode) revision

code: ABI-L2-ADP*

citedResponsibleParty: (CI_ResponsibleParty)

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

address: (CI_Address)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor

city: Silver Spring

administrativeArea: MD

postalCode: 20910

country: USA

electronicMailAddress: goes-r@noaa.gov

role: (CI_RoleCode) originator

abstract: The Aerosol Detection product contains three images in the form of binary masks that identify the presence of aerosols, dust, and smoke. The aerosol mask indicates the presence of either smoke or dust. The dust and smoke masks indicate the presence of dust and smoke, respectively. Because the presence of smoke and dust are independently derived, a given pixel can be identified with both dust and smoke. The product includes data quality information for on-earth pixels. The binary aerosol, dust, and smoke mask values are dimensionless quantities. The
Aerosol Detection product images are produced on the ABI fixed grid at 2 km resolution for Full Disk, CONUS and Mesoscale coverage regions. Product data is produced under the following conditions: Clear sky; Snow-free; Geolocated source data to local zenith angles of 90 degrees and to solar zenith angles of 87 degrees.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator

resourceFormat: (MD_Format)
name: netCDF
version: 4

descriptiveKeywords: (MD_Keywords)
keyword: ATMOSPHERE > AEROSOLS > DUST/ASH/SMOKE
type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0

citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author

descriptiveKeywords: (MD_Keywords)
keyword: aerosol_binary_mask
keyword: smoke_binary_mask
keyword: dust_binary_mask
type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision

resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted.
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
 distance:
 Distance: 2
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Mesoscale

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: aerosol_binary_mask
 attributeType:
 descriptor: Flag to signal the absence/presence of aerosols in each pixel
 units:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: smoke_binary_mask
 attributeType:
 descriptor: Flag to signal the absence/presence of smoke in each pixel
 units:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: dust_binary_mask
 attributeType:
 descriptor: Flag to signal the absence/presence of dust in each pixel
 units:
scaleFactor:
offset:

ccontentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Aerosol Detection data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
evaluationMethodDescription: Number of pixels where geolocated source data is available to a local zenith angle of 60 degrees; Number of pixels where geolocated source data is available to a solar zenith angle of 60 degrees; Number of pixels that qualified for the smoke and dust retrievals; Number of pixels where each of smoke and dust are detected. Of the number of pixel statistics, the first in the list is calculated using geolocated pixels to a solar zenith angle of 87 degrees. The second statistic in the list is calculated using geolocated pixels to a local zenith angle of 90 degrees. The last two statistics in the list are calculated using good retrieved detection pixels to a local zenith angle of 90 degrees and a solar zenith angle of 87 degrees. The percentages of pixels assigned to each retrieval quality value are also included in the product.
 result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
 result: (DQ_QuantitativeResult)
The Aerosol Detection product is generated by the GOES-R ABI Aerosol Detection ground processing algorithm. The algorithm applies threshold tests to ABI reflectance bands and thermal bands over land and ocean backgrounds to obtain results. Clear sky is determined using clear and probably clear pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. Snow-free is determined using snow-free pixels indicated in the most recent intermediate binary snow mask generated by the Snow Cover algorithm.

processor: (CI_ResponsibleParty)

organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)

role: (CI_RoleCode) processor

output: (LE_Source)

processedLevel: (MD_Identifier)

authority: (CI_Citation)

title: NOAA Processing Levels

date: (CI_Date)

date: 2013-11

dateType: (CI_DateTypeCode) revision

citedResponsibleParty: (CI_ResponsibleParty)

organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)

contactInfo: (CI_Contact)

onlineResource: (CI_OnlineResource)

linkage: https://www.ngdc.noaa.gov/wiki/index.php?title=NOAA_Processing_Levels

code: L2

metadataMaintenance: (MD_MaintenanceInformation)

maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded

maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)

operation: (MI_Operation)

description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the
GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16
different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.10 Aerosol Optical Depth Product ISO Series Metadata

(MI_Metadata)
 fileIdentifier: 6aae4020-af4e-11e1-afa6-0800200c9a66
 language: eng
 characterSet: (MD_CharacterSetCode) utf8
 parentIdentifier: n/a
 hierarchyLevel: (MD_ScopeCode) series
 hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Aerosol Optical Depth Product Collection
 contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_CONTACT)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
 role: (CI_RoleCode) originator
 dateStamp: 2017-05-11
 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
 dataSetURI: OR_ABI-L2-AOD-ISO-SERIES_c20171311130000.xml

 spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the
same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

IdentificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Aerosol Optical Depth Product
alternateTitle: Data short name (DSN): ABI-L2-AODC-M3
alternateTitle: Data short name (DSN): ABI-L2-AODC-M4
alternateTitle: Data short name (DSN): ABI-L2-AODF-M3
alternateTitle: Data short name (DSN): ABI-L2-AODF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-AOD*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The Aerosol Optical Depth product contains an image with pixel values identifying a measure of the extinction due to atmospheric aerosols at a wavelength of 550 nm over land and ocean. The product includes data quality information that provides an assessment of the quality of the algorithm retrievals for on-earth pixels. The aerosol optical depth value is a dimensionless quantity. The Aerosol Optical Depth product image is produced on the ABI fixed grid at 2 km resolution for Full Disk and CONUS coverage regions. Product data is produced under the following conditions: Clear sky; snow-free; Geolocated source data to local zenith angles of 90 degrees, to solar zenith angles of 90 degrees, and sunglint angles greater than 40 degrees when over the ocean.
pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data,
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
 aName: AOD
attributeType:
descr {"prev":null,
 "value":null}
type: ABI Level 2+ Aerosol Optical Depth at 550 nm
units:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 contentDescription: (MD_CoverageContentTypeCode) qualityInformation
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
attributeType:
descr {"prev":null,
 "value":null}
type: ABI Level 2+ Aerosol Optical Depth data quality flags
units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image
observation period; Percentage of each of good and bad aerosol optical depth pixels over land and over
ocean for the eighteen, 10 degree latitude bands in the product image; Number of aerosol optical
depth pixels whose values are outside the required measurement range over land and over ocean;
Minimum, maximum, mean, and standard deviation of the aerosol optical depth values in the 550
nm image over land and over ocean for the eighteen, 10 degree latitude bands in the
product image; Minimum, maximum, mean, and standard deviation of the aerosol optical depth
values in the images at ABI reflective band wavelengths associated with source level 1b data used
by the algorithm over land and over ocean for the eighteen, 10 degree latitude bands in the
product image; Minimum, maximum, mean, and standard deviation of the surface reflectivity
values at the ABI reflective band wavelengths associated with source level 1b data used by the
algorithm over land and over ocean for the eighteen, 10 degree latitude bands in the product
image; Number of attempted retrievals over land and over ocean for the eighteen, 10 degree
latitude bands; Number of attempted retrievals over land and over ocean within the local zenith
angle performance specification limit of 60 degrees for the eighteen, 10 degree latitude bands.
These statistics are calculated using geolocated pixels to a solar zenith angle of 80 degrees, which
is associated with good quality pixels. These statistics are calculated using geolocated pixels to a
local zenith angle of 90 degrees, except for the number of attempted retrievals over land and over
ocean within the local zenith angle performance specification limit of 60 degrees. The
percentages of pixels assigned to each retrieval quality value are also included in the product.
result:
report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
value:
report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The Aerosol Optical Depth product is generated by the GOES-R ABI Aerosol Optical Depth ground processing algorithm. The algorithm determines ABI reflectance measurements using physical retrievals that utilize a lookup table of TOA reflectance that is pre-calculated from the Community Radiative Transfer Model (CRTM). The physical retrievals are performed separately over land and ocean. The algorithm computes the optical thickness of aerosols at wavelengths that depend on the surface type. ABI bands 1, 2, and 6 with central wavelengths of 0.47, 0.64, and 2.25 um are used for land retrievals over dark vegetated surfaces. ABI bands 2, 3, 5, and 6 with central wavelengths of 0.64, 0.87, 1.61, and 2.25 um are used for ocean retrievals. The aerosol type is evaluated based on the selection of an aerosol model from four prescribed land aerosol models, generic, dust, smoke, and urban, or for a pair of fine and coarse marine aerosol modes selected from four prescribed fine modes and five prescribed coarse modes. The suspended matter is derived from the computed aerosol optical depth. Pixels in the product image with out of range values are assigned the minimum or maximum value in the valid range. Clear sky is determined using clear and probably clear pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. Snow-free is determined using snow-free pixels indicated in the most recent intermediate binary snow mask generated by the Snow Cover algorithm. The latitude band statistics, whose extents are a function of the ABI’s fixed grid field of regard and latitude, use the CF metadata conventions hybrid grid mapping that includes both the grid_mapping for the “geostationary” and “latitude_longitude” projections.
processor: (CI_ResponsibleParty)
 organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
 role: (CI_RoleCode) processor
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.11 Volcanic Ash: Detection and Height Product ISO Series Metadata

(MI_Metadata)
fileIdentifier: 0c7acd60-b012-11e1-afa6-0800200c9a66
The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

citation:
 title: ABI Level 2+ Volcanic Ash: Detection and Height Product
 alternateTitle: Data short name (DSN): ABI-L2-VAAF-M3
 alternateTitle: Data short name (DSN): ABI-L2-VAAF-M4
date: 2017-05-11
 dateType: creation

identifier:
 authority: gov.nesdis.noaa
date: 2014
 dateType: revision
code: ABI-L2-VAAF-*
citedResponsibleParty: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

abstract: The Volcanic Ash: Detection and Height product contains two images with pixel values identifying volcanic ash cloud height and volcanic ash mass loading. The ash cloud top height is the geopotential height of the ash cloud top. The ash mass loading in the mass of volcanic ash per unit of area. The product includes two types of data quality information. One
The type of data quality indicator describes the quality of the volcanic ash detection, providing an assessment of the presence of volcanic ash for on-earth pixels including an indication of good or degraded quality, or invalid pixels, and the confidence in the detection of volcanic ash existing in single and multiple layers. The second type of data quality indicator provides information about the quality and ash characteristics of the retrieval for on-earth pixels, identifying failure conditions, cloud top temperature, cloud emissivity, and absorbed optical depth ratio retrieval quality, and the volcanic ash particle size. The units of measure for the ash cloud top height value is meters. The units of measure for the ash mass loading value is metric tons (tonnes) per square kilometer. The Volcanic Ash: Detection and Height product images are produced on the ABI fixed grid at 2 km resolution for the Full Disk coverage region. Product data is produced for geolocated source data to local zenith angles of 90 degrees for both daytime and nighttime conditions.

pointOfContact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov

role: (CI_RoleCode) originator

resourceFormat: (MD_Format)
 name: netCDF
 version: 4

descriptiveKeywords: (MD_Keywords)
 keyword: ATMOSPHERE > AEROSOLS > DUST/ASH/SMOKE
type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0

citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author

descriptiveKeywords: (MD_Keywords)
 keyword: volcanic_ash_cloud_height

thesaurusName: (CI_Citation)
 title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimiter: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance:
 Distance: 2
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: VAH
attributeType: ABI Level 2+ Volcanic Ash: Ash Cloud Height
units: DerivedUnit:
 identifier: m
derivationUnitTerm: scaleFactor:
offset: dimension: (MD_Band)
sequenceIdentifier: MemberName: aName: VAML
attributeType: descriptor: ABI Level 2+ Volcanic Ash: Ash Mass Loading
units: DerivedUnit:
 identifier: t km-2
derivationUnitTerm: derivationUnitTerm: derivationUnitTerm:scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription: RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier: MemberName: aName: DET_DQF
attributeType: descriptor: ABI Level 2+ Volcanic Ash data detection quality flags
units:
dimension: (MD_Band)
sequenceIdentifier: MemberName: aName: RET_DQF
attributeType: descriptor: ABI L2+ Volcanic Ash data retrieval quality flags
units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of attempted retrievals; Total volcanic ash mass loading in image; Number of volcanic ash cloud top height and volcanic ash mass loading pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the values in the volcanic ash cloud top height and volcanic ash mass loading product images. Number of attempted retrievals is calculated using geolocated pixels where the retrieval is successful or failed. The other statistics are calculated using geolocated pixels where the retrieval is successful to a local zenith angle of 80 degrees. The percentages of pixels assigned to each flag value for the data detection and retrieval quality information are also included in the product.

result: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:

result: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_GRB_errors
 evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:

lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: The Volcanic Ash: Detection and Height product is generated by the GOES-R ABI Volcanic Ash: Detection and Height ground processing algorithm. Volcanic ash cloud top height and mass loading are determined by retrieving ash cloud effective temperature, 11 micron cloud emissivity, and the 12/11 micron effective absorption optical depth ratio (β-ratio). The algorithm uses a physical retrieval utilizing an in-line radiative transfer model to compute clear sky TOA radiances, clear sky transmittance and radiances profiles, and black cloud radiance profiles. The algorithm is optimized by first detecting volcanic ash, and then performing the volcanic ash cloud top height and mass loading retrievals satisfying an ash confidence level threshold. The algorithm identifies volcanic ash confidence levels for both single and multiple layer cloud conditions. Pixels in the product images with out of range values are assigned the minimum or maximum value in the valid range.

processor: (CI_ResponsibleParty)
 organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility,
Suitland, MD)

role: (CI_RoleCode) processor
output: (LE_Source)
processedLevel: (MD_Identifier)
authority: (CI_Citation)
title: NOAA Processing Levels
date: (CI_Date)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
onlineResource: (CI_OnlineResource)

role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: http://www.goes-r.gov
 date:
 code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.
instrument: (MI_Instrument)
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: http://www.goes-r.gov/spacesegment/abi.html
 date:
 code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared
wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.12 Legacy Vertical Temperature Profile Product ISO Series Metadata
08 March 2019

fileIdentifier: 52291390-afe9-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Legacy Vertical Temperature Profile Product Collection
contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
 role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ABI-L2-LVTP-ISO-SERIES_c20171311302000.xml

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1086
 resolution: Distance: 10
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 1086
 resolution: Distance: 10
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: Full Disk
spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 300
 resolution:
 Distance: 10
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 10
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 100
 resolution:
 Distance: 10
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 100
 resolution:
 Distance: 10
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
 referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: GOES-R Product Definition and Users Guide (PUG) Volume 5: Level 2+
 date: (CI_Date)
 date: 2014
 dateType: (CI_DateTypeCode) publication
 otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products
are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Legacy Vertical Temperature Profile Product
alternateTitle: Data short name (DSN): ABI-L2-LVTPM1-M3
alternateTitle: Data short name (DSN): ABI-L2-LVTPM2-M3
alternateTitle: Data short name (DSN): ABI-L2-LVTPC-M3
alternateTitle: Data short name (DSN): ABI-L2-LVTPC-M4
alternateTitle: Data short name (DSN): ABI-L2-LVTPF-M3
alternateTitle: Data short name (DSN): ABI-L2-LVTPF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-LVTP*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The Legacy Vertical Temperature Profile product contains a three-dimensional image with pixel values identifying the air temperature at 101 standard pressure levels. The units of measure for the temperature profile is Kelvin. The product includes three types of data quality information. One describes the overall quality of the data pixels, providing an assessment of the derived stability indices data values for on-earth pixels. The second provides information about
the quality of the physical retrieval for on-earth pixels, identifying failure conditions. The third provides information about the quality of the first guess skin temperature for on-earth pixels, identifying temperature threshold failure conditions for on-earth pixels. The Legacy Vertical Temperature Profile product images are produced on the ABI fixed grid at 10 km resolution for Full Disk, CONUS, and Mesoscale coverage regions. Product data is produced under the following conditions: Clear sky; Geolocated source data to local zenith angles of 80 degrees for both daytime and nighttime conditions.

pointOfContact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
 role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
 name: netCDF
 version: 4
 descriptiveKeywords: (MD_Keywords)
 keyword: ATMOSPHERE > ATMOSPHERIC TEMPERATURE > TEMPERATURE PROFILES
 type: (MD_KeywordTypeCode) theme
 thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
 date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
 edition: Version 7.0.0.0.0
 citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
 descriptiveKeywords: (MD_Keywords)
 keyword: air_temperature
 type: (MD_KeywordTypeCode) theme
 thesaurusName: (CI_Citation)
 title: CF Standard Name Table v25
 date: (CI_Date)
 date: 2013-07-05
 dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
 distance:
 Distance: 10
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
eastBoundLongitude: -89.623576
southBoundLatitude: 14.571340
northBoundLatitude: 53.500062

extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Mesoscale

attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: LVT
 attributeType:
 descriptor: ABI Level 2+ Legacy Vertical Temperature Profile provides air temperature at 101 pressure levels in the atmosphere
 units:
 DerivedUnit:
 identifier: K
 derivationUnitTerm:
 scaleFactor:
 offset:

attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF_Overall
 attributeType:
 descriptor: overall quality of the data pixels, providing an assessment of the vertical temperature profile data values for on-earth pixels
 units:

attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF_Retrieval
attributeType:
descriptor: information about the quality of the physical retrieval for on-earth pixels, identifying failure conditions
units:

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF_SkinTemp
attributeType:
descriptor: information about the quality of the first guess skin temperature for on-earth pixels, identifying temperature threshold failure conditions for on-earth pixels
units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) series
report: (DQ_QuantitativeAttributeAccuracy)
nameOfMeasure: Product summary statistics
evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of attempted retrievals; Number of legacy vertical temperature profile data values outside the required measurement range. Note that the count is constrained to no more than one per horizontal grid point; Applicable ABI emissive band-specific brightness temperature differences mean and standard deviation values between those observed and modeled. These statistics are calculated using valid pixels based on the local zenith angle threshold of 80 degrees and the latitude threshold of 70 degrees north and south. The percentages of pixels assigned to each flag value for the three types of data quality information are also included in the product.
result:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
The Legacy Vertical Temperature Profile, Legacy Vertical Moisture Profile, Total Precipitable Water, and Derived Stability Indices products are generated by the GOES-R ABI Legacy Atmospheric Profiles ground processing algorithm. The algorithm uses processed NWP model profile data as the first guess and employs a regression retrieval followed by an iterative physical retrieval that utilizes the ground system implementation of the Community Radiative Transfer Model (CRTM) to derive the final product data. The temperature and moisture profiles contain values at 101 standard pressure levels, of which only 54 temperature and 35 moisture pressure levels are actually populated in the retrieval. The 54 temperature levels are from approximately 103 hPa to approximately 1014 hPa. The 35 moisture levels are from 300 hPa to approximately 1014 hPa. The regression retrieval is applied for coverage regions corresponding to local zenith angles to 80 degrees but the physical retrieval is limited to local zenith angles to 67 degrees. The product is generated for 5 x 5 fields of regard from 2 km pixel inputs where the percentage of clear pixels satisfies a 20 percent threshold. Clear sky is determined using clear and probably clear pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. Total precipitable water from the surface to 300 hPa is derived from the retrieved moisture profile. In addition, the five atmospheric stability indices, CAPE, K-index, Lifted Index, Showalter Index, and Total Totals Index, are derived from the retrieved moisture and temperature profiles. Pixels in the product images with out of range values are assigned the minimum or maximum value in the valid range.
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

Instrument:

Identifier:

Authority:

Title: http://www.goes-r.gov/spacesegment/abi.html

Date:

Code: GOES-16 ABI instrument_id (serial number)

Type: Advanced Baseline Imager

Description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

Platform:

Identifier:

Authority:

Title: http://www.goes-r.gov

Date:

Code: GOES-West (G17)

Description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer.
Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

- instrument: (MI_Instrument)
- identifier: (MD_Identifier)
- authority: (CI_Citation)
- title: http://www.goes-r.gov/spacesegment/abi.html
- date: code: GOES-17 ABI instrument_id (serial number)
- type: Advanced Baseline Imager
- description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornadoes). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.13 Legacy Vertical Moisture Profile Product ISO Series Metadata

- fileIdentifier: d5ed67b0-afe6-11e1-afa6-0800200c9a66
- language: eng
- characterSet: (MD_CharacterSetCode) utf8
- parentIdentifier: n/a
- hierarchyLevel: (MD_ScopeCode) series
- hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Legacy Vertical Moisture Profile Product Collection
- contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
- contactInfo: (CI_Contact)
 address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ABI-L2-LVMP-ISO-SERIES_c20171311302000.xml

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 1086
resolution:
 Distance: 10
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 1086
resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 300
resolution:
 Distance: 10
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 500
resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

- **code**: goes_projection
- **codeSpace**: http://cfconventions.org/latest.html

identificationInfo
- **citation**: (CI_Citation)
 - **title**: ABI Level 2+ Legacy Vertical Moisture Profile Product
abstract: The Legacy Vertical Moisture Profile product contains a three-dimensional image with pixel values identifying the water vapor at 101 standard pressure levels. The product includes three types of data quality information. One describes the overall quality of the data pixels, providing an assessment of the legacy vertical temperature profile data values for on-earth pixels. The second provides information about the quality of the physical retrieval for on-earth pixels, identifying failure conditions. The third provides information about the quality of the first guess skin temperature for on-earth pixels, identifying temperature threshold failure conditions for on-earth pixels. The units of measure for the vertical temperature value is percent. The Legacy Vertical Moisture Profile product image is generated on the ABI fixed grid at 10 km resolution for Full Disk, CONUS, and Mesoscale coverage regions. Product data is produced under the following conditions: Clear sky; Geolocated source data to local zenith angles of 80 degrees for both daytime and nighttime conditions.
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: ATMOSPHERE > ATMOSPHERIC WATER VAPOR > WATER VAPOR PROFILES
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: relative_humidity
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance:
Distance: 10
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
TimePeriod:
beginPosition: 2017-05-11
endPosition: now
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Mesoscale

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: LVM
 attributeType:
 descriptor: ABI Level 2+ Legacy Vertical Moisture Profile provides relative humidity at 101 pressure levels in the atmosphere
 units:
 DerivedUnit:
 identifier: percent
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF_Overall
 attributeType:
 descriptor: overall quality of the data pixels, providing an assessment of the vertical moisture profile data values for on-earth pixels
 units:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF_Retrieval
 attributeType:
 descriptor: information about the quality of the physical retrieval for on-earth pixels, identifying failure conditions
 units:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF_SkinTemp
attributeType:
descriptor: information about the quality of the first guess skin temperature for on-earth pixels, identifying temperature threshold failure conditions for on-earth pixels
units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
nameOfMeasure: Product summary statistics
evaluationMethodDescription: mean difference and standard deviation of calculated vs observed brightness temperature by channel; percent of pixels for each data quality flag value
result:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The Legacy Vertical Temperature Profile, Legacy Vertical Moisture Profile, Total Precipitable Water, and Derived Stability Indices products are generated by the GOES-R ABI Legacy Atmospheric Profiles ground processing algorithm. The algorithm uses processed NWP model profile data as the first guess and employs a regression retrieval followed by an iterative physical retrieval that utilizes the ground system implementation of the Community Radiative Transfer Model (CRTM) to derive the final product data. The temperature and moisture profiles contain values at 101 standard pressure levels, of which only 54 temperature and 35 moisture pressure levels are actually populated in the retrieval. The 54
temperature levels are from approximately 103 hPa to approximately 1014 hPa. The 35 moisture levels are from 300 hPa to approximately 1014 hPa. The regression retrieval is applied for coverage regions corresponding to local zenith angles to 80 degrees but the physical retrieval is limited to local zenith angles to 67 degrees. The product is generated for 5 x 5 fields of regard from 2 km pixel inputs where the percentage of clear pixels satisfies a 20 percent threshold. Clear sky is determined using clear and probably clear pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. Total precipitable water from the surface to 300 hPa is derived from the retrieved moisture profile. In addition, the five atmospheric stability indices, CAPE, K-index, Lifted Index, Showalter Index, and Total Totals Index, are derived from the retrieved moisture and temperature profiles. Pixels in the product images with out of range values are assigned the minimum or maximum value in the valid range.

processor: (CI_ResponsibleParty)
organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
role: (CI_RoleCode) processor
output: (LE_Source)
processedLevel: (MD_Identifier)
authority: (CI_Citation)
title: NOAA Processing Levels
date: (CI_Date)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
 onlineResource: (CI_OnlineResource)
role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and
lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

- **identifier**: (MD_Identifier)
- **authority**: (CI_Citation)
- **title**: http://science.nasa.gov/missions/goes-r/
- **date**
- **code**
- **status**: (MD_ProgressCode) onGoing
- **parentOperation**:
- **platform**: (MI_Platform)
- **identifier**: (MD_Identifier)
- **authority**: (CI_Citation)
- **title**: http://www.goes-r.gov
- **date**
- **code**: GOES-East (G16)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

- **instrument**: (MI_Instrument)
- **identifier**: (MD_Identifier)
- **authority**: (CI_Citation)
- **title**: http://www.goes-r.gov/spacesegment/abi.html
- **date**
- **code**: GOES-16 ABI instrument_id (serial number)
- **type**: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of
storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.14 Total Precipitable Water Product ISO Series Metadata

(MI_Metadata)
fileIdentifier: 42511480-afcf-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Total Precipitable Water Product Collection
contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ABI-L2-TPW-ISO-SERIES_c20171311303000.xml

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 1086
resolution:
 Distance: 10
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 1086
 resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 300
 resolution:
 Distance: 10
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 100
 resolution:
 Distance: 10
axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 100
 resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
authority: (CI_Citation)
title: GOES-R Product Definition and Users Guide (PUG) Volume 5: Level 2+

Products
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) publication

otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.
code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Total Precipitable Water Product
alternateTitle: Data short name (DSN): ABI-L2-TPWM1-M3
alternateTitle: Data short name (DSN): ABI-L2-TPWM2-M3
alternateTitle: Data short name (DSN): ABI-L2-TPWC-M3
alternateTitle: Data short name (DSN): ABI-L2-TPWC-M4
alternateTitle: Data short name (DSN): ABI-L2-TPWF-M3
alternateTitle: Data short name (DSN): ABI-L2-TPWF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation

identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-TPW*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
The Total Precipitable Water product contains an image with pixel values identifying the integrated column water vapor amount from the surface to a height corresponding to an atmospheric pressure of 300 hPa. The units of measure for the total precipitable water value is millimeters. The product includes three types of data quality information. One describes the overall quality of the data pixels, providing an assessment of the derived stability indices data values for on-earth pixels. The second provides information about the quality of the physical retrieval for on-earth pixels, identifying failure conditions. The third provides information about the quality of the first guess skin temperature for on-earth pixels, identifying temperature threshold failure conditions for on-earth pixels. The Total Precipitable Water product images are produced on the ABI fixed grid at 10 km resolution for Full Disk, CONUS, and Mesoscale coverage regions. Product data is produced under the following conditions: Clear sky; Geolocated source data to local zenith angles of 80 degrees for both daytime and nighttime conditions.
role: (CI_RoleCode) author
descriptiveKeywords: (MD_KeywordTypeCode) theme
key: lwe_thickness_of_atmosphere_mass_content_of_water_vapor
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance: Distance: 10
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
TimePeriod:
beginPosition: 2017-05-11
endPosition: now
extent: (EX_Extent)

gеographicElement: (EX_GеographicDescription)
gеographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-East

gеographicElement: (EX_GеographicDescription)
gеographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West

gеographicElement: (EX_GеographicDescription)
gеographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West

gеographicElement: (EX_GеographicDescription)
gеographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West

extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Mesoscale

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: TPW
 attributeType:
 descriptor: Total Precipitable Water
 units:
 DerivedUnit:
 identifier: mm
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF_Overall
attributeType:
descriptor: overall quality of the data pixels, providing an assessment of the total precipitable water data values for on-earth pixels
units:

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF_Retrieval
attributeType:
descriptor: information about the quality of the physical retrieval for on-earth pixels, identifying failure conditions
units:

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF_SkinTemp
attributeType:
descriptor: information about the quality of the first guess skin temperature for on-earth pixels, identifying temperature threshold failure conditions for on-earth pixels
units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
nameOfMeasure: Product summary statistics
evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of attempted retrievals; Number of total precipitable water pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the total precipitable water values in the product image; Applicable ABI emissive band-specific brightness temperature differences mean and standard deviation values
between those observed and modeled. These statistics are calculated using valid pixels based on the local zenith angle threshold of 80 degrees and the latitude threshold of 70 degrees north and south. The percentages of pixels assigned to each flag value for the three types of data quality information are also included in the product.

result:

report: (DQ_CompletenessOmission)

nameOfMeasure: percent_uncorrectable_L0_errors

evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.

result: (DQ_QuantitativeResult)

valueUnit:

BaseUnit:

identifier: percent

unitsSystem:

value:

report: (DQ_CompletenessOmission)

nameOfMeasure: percent_uncorrectable_GRB_errors

evaluationMethodDescription: percent data lost due to uncorrectable GRB errors

result: (DQ_QuantitativeResult)

valueUnit:

BaseUnit:

identifier: percent

unitsSystem:

value:

lineage: (LI_Lineage)

processStep: (LE_ProcessStep)

description: The Legacy Vertical Temperature Profile, Legacy Vertical Moisture Profile, Total Precipitable Water, and Derived Stability Indices products are generated by the GOES-R ABI Legacy Atmospheric Profiles ground processing algorithm. The algorithm uses processed NWP model profile data as the first guess and employs a regression retrieval followed by an iterative physical retrieval that utilizes the ground system implementation of the Community Radiative Transfer Model (CRTM) to derive the final product data. The temperature and moisture profiles contain values at 101 standard pressure levels, of which only 54 temperature and 35 moisture pressure levels are actually populated in the retrieval. The 54 temperature levels are from approximately 103 hPa to approximately 1014 hPa. The 35 moisture levels are from 300 hPa to approximately 1014 hPa. The regression retrieval is applied for coverage regions corresponding to local zenith angles to 80 degrees but the physical retrieval is limited to local zenith angles to 67 degrees. The product is generated for 5 x 5 fields of regard from 2 km pixel inputs where the percentage of clear pixels satisfies a 20 percent threshold. Clear sky is determined using clear and probably clear pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. Total precipitable water from the surface to 300 hPa is derived from the retrieved moisture profile. In addition, the five atmospheric stability indices, CAPE, K-index, Lifted Index, Showalter Index, and Total Totals Index, are derived from the retrieved moisture and temperature profiles. Pixels in the product images with out of range values are assigned the minimum or maximum value in the valid range.

processor: (CI_ResponsibleParty)
organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
role: (CI_RoleCode) processor
output: (LE_Source)
processedLevel: (MD_Identifier)
authority: (CI_Citation)
title: NOAA Processing Levels
date: (CI_Date)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
onlineResource: (CI_OnlineResource)
role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60
seconds. The ABI is calibrated to an accuracy of 3% (1 \(\sigma \)) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 \(\sigma \)) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecaster uses these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 \(\sigma \)) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 \(\sigma \)) at 300K.

5.1.15 Derived Stability Indices Product ISO Series Metadata
Product Collection

contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_ABI-L2-DSI-ISO-SERIES_c20171311302000.xml

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 1086
resolution:
Distance: 10
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 1086
resolution:
Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk
spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 300
 resolution:
 Distance: 10
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 10
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 100
 resolution:
 Distance: 10
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 100
 resolution:
 Distance: 10
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
 referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: GOES-R Product Definition and Users Guide (PUG) Volume 5: Level 2+
 date: 2014
 dateType: (CI_DateTypeCode) publication
 otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products
are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Derived Stability Indices Product
alternateTitle: Data short name (DSN): ABI-L2-DSIM1-M3
alternateTitle: Data short name (DSN): ABI-L2-DSIM2-M3
alternateTitle: Data short name (DSN): ABI-L2-DSIC-M3
alternateTitle: Data short name (DSN): ABI-L2-DSIC-M4
alternateTitle: Data short name (DSN): ABI-L2-DSIF-M3
alternateTitle: Data short name (DSN): ABI-L2-DSIF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-DSI*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The Derived Stability Indices product contains images for five stability indices with pixel values that are indicators of atmospheric instability associated with convection and potential thunderstorm activity. 1) Convective(ly) Available Potential Energy (CAPE): A measure of atmospheric stability calculated by integrating the positive temperature difference between the surrounding atmosphere and a parcel of air lifted adiabatically from the surface to its
equilibrium level. It exists under conditions of potential instability, and measures the potential energy per unit mass that would be released by the unstable parcel if it were able to convect upwards to equilibrium. Units of measure are joules per kilogram. 2) Lifted Index: The temperature difference between a parcel of air lifted adiabatically from the surface to a finishing air pressure of 500 hPa in the troposphere and the ambient air temperature at the finishing air pressure in the troposphere. The air parcel is "lifted" by moving the air parcel from the surface to the Lifting Condensation Level (dry adiabatically) and then from the Lifting Condensation Level to the finishing air pressure (wet adiabatically). Units of measure are kelvin. 3) K-Index: A measure of atmospheric stability indicating the potential of severe convection. The index is the difference in air temperature between 850 and 500 hPa, the dew point temperature at 850 hPa, and the difference between the air temperature and the dew point temperature at 700 hPa. Units of measure are kelvin. 4) Showalter Index: A measure of atmospheric stability indicating the convective and thunderstorm potential. The index is the temperature difference between a parcel of air lifted from 850 to 500 hPa (wet adiabatically) and the ambient air temperature at 500 hPa. Units of measure are kelvin. 5) Total Totals Index: A measure of atmospheric stability indicating the likelihood of severe convection. The index is derived from the difference in air temperature between 850 and 500 hPa (the vertical totals) and the difference between the dew point temperature at 850 hPa and the air temperature at 500 hPa (the cross totals). The index is the sum of the vertical and cross totals. Units of measure are kelvin. The product includes three types of data quality information. One describes the overall quality of the data pixels, providing an assessment of the derived stability indices data values for on-earth pixels. The second provides information about the quality of the physical retrieval for on-earth pixels, identifying failure conditions. The third provides information about the quality of the first guess skin temperature for on-earth pixels, identifying temperature threshold failure conditions for on-earth pixels. The Derived Stability Indices product images are produced on the ABI fixed grid at 10 km resolution for Full Disk, CONUS, and Mesoscale coverage regions. Product data is produced under the following conditions: Clear sky; Geolocated source data to local zenith angles of 80 degrees for both daytime and nighttime conditions.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
 name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
 keyword: ATMOSPHERE > ATMOSPHERIC TEMPERATURE > ATMOSPHERIC STABILITY
 type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
individualName: Olsen, L.M., G. Major, K. Shein, J. Scialdone, S. Ritz, T. Stevens,
M. Morahan, A. Aleman, R. Vogel, S. Leicester, H. Weir, M. Meaux, S. Grebas, C. Solomon, M.
Holland, T. Northcutt, R. A. Restrepo, R. Bilodea
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: temperature_difference_between_ambient_air_and_air_lifted_adiabatically_from_the_surface
keyword: atmosphere_convective_available_potential_energy_wrt_surface
keyword: atmosphere_stability_k_index
keyword: atmosphere_stability_showalter_index
keyword: atmosphere_stability_total_totals_index
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance: Distance: 10
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
TimePeriod:
beginPosition: 2017-05-11
endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: -156.2995
eastBoundLongitude: 6.2995
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282

extent: (EX_Estent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West

genericElement: (EX_GeographicBoundingBox)
wstBoundLongitude: 141.7005
eastBoundLongitude: -55.7005
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282

extent: (EX_Estent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: CONUS - GOES-East

genericElement: (EX_GeographicBoundingBox)
wstBoundLongitude: -152.109282
eastBoundLongitude: -52.946879
southBoundLatitude: 14.571340
northBoundLatitude: 56.761450

extent: (EX_Estent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: CONUS - GOES-West

genericElement: (EX_GeographicBoundingBox)
wstBoundLongitude: 175.623576
eastBoundLongitude: -89.623576
southBoundLatitude: 14.571340
northBoundLatitude: 53.500062

extent: (EX_Estent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Mesoscale

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: LI
attributeType:
descriptor: Derived Stability Indices: Lifted Index
units:
DerivedUnit:
identifier: K

derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: CAPE
attributeType:
descriptor: ABI Level 2+ Derived Stability Indices: CAPE (Convective(ly) Available Potential Energy)
units:
DerivedUnit:
identifier: J kg⁻¹
derivationUnitTerm:
derivationUnitTerm:
derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: TT
attributeType:
descriptor: ABI Level 2+ Derived Stability Indices: Total Totals Index
units:
DerivedUnit:
identifier: K
derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
cContentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: SI
 attributeType:
descriptor: ABI Level 2+ Derived Stability Indices: Showalter Index
units:
 DerivedUnit:
 identifier: K
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
cContentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: KI
 attributeType:
descriptor: ABI Level 2+ Derived Stability Indices: K-Index
units:
 DerivedUnit:
 identifier: K
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
cContentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: DQF_Overall
 attributeType:
descriptor: overall quality of the data pixels, providing an assessment of the derived stability indices data values for on-earth pixels
units:
contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF_Retrieval
 attributeType:
 descriptor: information about the quality of the physical retrieval for on-earth pixels, identifying failure conditions
 units:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF_SkinTemp
 attributeType:
 descriptor: information about the quality of the first guess skin temperature for on-earth pixels, identifying temperature threshold failure conditions for on-earth pixels
 units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of attempted retrievals; Number of CAPE, Lifted Index, K-Index, Showalter Index, and Total Totals Index pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the values in the CAPE, Lifted Index, K-Index, Showalter Index, and Total Totals Index product images; Applicable ABI emissive band-specific brightness temperature differences mean and standard deviation values between those observed and modeled. These statistics are calculated using valid pixels based on the local zenith angle threshold of 80 degrees and the latitude threshold of 70 degrees north and south. The percentages of pixels assigned to each flag value for the three types of data quality information are also included in the product.
result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.

result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
 identifier: percent
unitsSystem:
value:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
 identifier: percent
unitsSystem:
value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The Legacy Vertical Temperature Profile, Legacy Vertical Moisture Profile, Total Precipitable Water, and Derived Stability Indices products are generated by the GOES-R ABI Legacy Atmospheric Profiles ground processing algorithm. The algorithm uses processed NWP model profile data as the first guess and employs a regression retrieval followed by an iterative physical retrieval that utilizes the ground system implementation of the Community Radiative Transfer Model (CRTM) to derive the final product data. The temperature and moisture profiles contain values at 101 standard pressure levels, of which only 54 temperature and 35 moisture pressure levels are actually populated in the retrieval. The 54 temperature levels are from approximately 103 hPa to approximately 1014 hPa. The 35 moisture levels are from 300 hPa to approximately 1014 hPa. The regression retrieval is applied for coverage regions corresponding to local zenith angles to 80 degrees but the physical retrieval is limited to local zenith angles to 67 degrees. The product is generated for 5 x 5 fields of regard from 2 km pixel inputs where the percentage of clear pixels satisfies a 20 percent threshold. Clear sky is determined using clear and probably clear pixels indicated in the temporally coincident intermediate 4-level cloud mask generated by the Cloud Mask algorithm. Total precipitable water from the surface to 300 hPa is derived from the retrieved moisture profile. In addition, the five atmospheric stability indices, CAPE, K-index, Lifted Index, Showalter Index, and Total Totals Index, are derived from the retrieved moisture and temperature profiles. Pixels in the product images with out of range values are assigned the minimum or maximum value in the valid range.

processor: (CI_ResponsibleParty)
 organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
 role: (CI_RoleCode) processor
output: (LE_Source)
 processedLevel: (MD_Identifier)
 authority: (CI_Citation)
 title: NOAA Processing Levels
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:

code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecaster use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.16 Rainfall Rate (Quantitative Precipitation Estimate) Product ISO Series Metadata

(MI_Metadata)

fileIdentifier: 3a3268a0-b006-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Rainfall Rate (Quantitative Precipitation Estimate) Product Collection

contact: (CI_ResponsibleParty)

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11

metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data

dataSetURI: OR_ABI-L2-RRQPE-ISO-SERIES_c20171311301000.xml

spatialRepresentationInfo: (MD_Georectified)

numberOfDimensions: 2

axisDimensionProperties: (MD_Dimension)

dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 5424
resolution:
Distance: 2

axisDimensionProperties: (MD_Dimension)

dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 5424
resolution:
Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
transformationDimensionDescription: Full Disk

checkPointAvailability: false

pointInPixel: (MD_PixelOrientationCode) upperLeft

referenceSystemInfo: (MD_ReferenceSystem)

referenceSystemIdentifier: (RS_Identifier)

authority: (CI_Citation)
title: Product Definition and Users Guide (PUG) Volume 5: Level 2 Products
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

- **code:** goes_projection
- **codeSpace:** http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)

- **citation:** (CI_Citation)
 - **title:** Advanced Baseline Imager (ABI) Level 2+ Rainfall Rate (Quantitative Precipitation Estimate) Product
 - **alternateTitle:** Data short name (DSN): ABI-L2-RRQPEF-M3
 - **alternateTitle:** Data short name (DSN): ABI-L2-RRQPEF-M4
 - **date:** (CI_Date)
 - **date:** 2017-05-11
 - **dateType:** (CI_DateTypeCode) creation
 - **identifier:** (MD_Identifier)
 - **authority:** gov.nesdis.noaa
 - **date:** (CI_Date)
 - **date:** 2014
 - **dateType:** (CI_DateTypeCode) revision
 - **code:** ABI-L2-RRQPEF-*
 - **citedResponsibleParty:** (CI_ResponsibleParty)
 - **organisationName:** DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 - **contactInfo:** (CI_Contact)
 - **address:** (CI_Address)
 - **deliveryPoint:** 1335 East-West Highway, SSMC1, 8th Floor
 - **city:** Silver Spring
 - **administrativeArea:** MD
 - **postalCode:** 20910
 - **country:** USA
 - **electronicMailAddress:** goes-r@noaa.gov
 - **role:** (CI_RoleCode) originator

- **abstract:** The Rainfall Rate Quantitative Precipitation Estimate (QPE) product contains an image with pixel values identifying the rainfall rate. The product includes data quality information that provides an assessment of the rainfall rate data values for on-earth pixels. The units of measure for the rainfall rate value is millimeters per hour. The Rainfall Rate (QPE) product image is produced on the ABI fixed grid at 2 km resolution for the Full Disk coverage region. Product data is produced for geolocated source data to local zenith angles of 90 degrees for both daytime and nighttime conditions.
pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
 name: netCDF
 version: 4
descriptiveKeywords: (MD_Keywords)
 keyword: ATMOSPHERE > PRECIPITATION > PRECIPITATION RATE
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
 date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
 keyword: rainfall_rate
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: CF Standard Name Table v25
date: (CI_Date)
 date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
 spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
 distance:
 Distance: 2
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
temporalElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
eastBoundLongitude: 6.2995
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282
temporalElement: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
temporalElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
eastBoundLongitude: -55.7005
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 aName: RRQPE
attributeType:
 descriptor: ABI Level 2+ Rainfall Rate (Quantitative Prediction Estimate)
 units:
 DerivedUnit:
 identifier: mm h-1
derivationUnitTerm:
 derivationUnitTerm:
 derivationUnitTerm:
scaleFactor:
offset:
RecordType: variable
c contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: DQF
attributeType:
descriptor: ABI Level 2+ Rainfall Rate (Quantitative Prediction Estimate) data quality
flags
units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
nameOfMeasure: Product summary statistics
evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of pixels where retrieval is successful; Number of pixels with rain; Total rainfall rate in product image; Number of rainfall rate pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the rainfall rate values in the product image. These statistics are calculated using good quality pixels. The percentages of pixels assigned to each DQF value are also included in the product.
result:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The Rainfall Rate (QPE) product is generated by the GOES-R ABI
Rainfall Rate (QPE) ground processing algorithm. Rainfall rate is obtained using a two-step process that involves the detection of pixels where rain is occurring and the retrieval of rainfall rate for those pixels. The algorithm includes eight linear and eight non-linear predictors based on brightness temperatures measured in five emissive ABI bands 8, 10, 11, 14, and 15 with central wavelengths of 6.17, 7.34, 8.44, 11.19, and 12.27 um, respectively. As a result of the spectral range of the ABI instrument not being capable of penetrating optically thick clouds where precipitation is occurring, the algorithm uses retrieval coefficients that are established based on a statistical correlation of the observed cloud top brightness temperatures with rainfall occurrence and rate as detected by sources capable of penetrating optically thick clouds, such as microwave observations. The retrieval coefficients used by the algorithm are managed as Level 2+ processing parameters (i.e. semi-static data) in the ground system.
lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
- **identifier:** (MD_Identifier)
- **authority:** (CI_Citation)
- **title:** http://www.goes-r.gov
- **date:**
- **code:** GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
- **identifier:** (MD_Identifier)
- **authority:** (CI_Citation)
- **title:** http://www.goes-r.gov/spacesegment/abi.html
- **date:**
- **code:** GOES-17 ABI instrument_id (serial number)
- **type:** Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of
storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.17 Derived Motion Winds Product ISO Series Metadata

(fileIdentifier: aee58cd0-f85-11e1-a21f-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Derived Motion Winds Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ABI-L2-DMW-ISO-SERIES_c201713131305000.xml

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
authority: (CI_Citation)
title: Product Definition and Users Guide (PUG) Volume 5: Level 2+ Products
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R DMW products use the latitude_longitude CF grid mapping. The coordinates for the global latitude/longitude grid are latitude and longitude. In two-dimensional map space, the x-axis is at the equator, and the y-axis is at the prime (Greenwich) meridian. By convention, degrees north and degrees east are used for latitude and longitude, respectively.

code: latitude_longitude
codeSpace: http://cfconventions.org/latest.html
The Derived Motion Winds product contains a list of wind vectors identifying their location, wind speed, wind direction, air pressure and temperature, and local zenith angle. The product includes data quality information for each wind vector. The product name includes the word “derived” because the wind vectors are derived by tracking environmental features, specifically clouds and clear sky water vapor over multiple ABI observations. The type of feature tracked varies as a function of the ABI band. Derived Motion Wind product files are generated for the ABI reflective and emissive band that are used to track features. The units of measure for the wind vector quantities are meters per second for wind speed; degrees for wind direction; hectopascals for wind pressure; kelvin for air temperature. Product data is produced for geolocated source data to local zenith angles of 90 degrees. The Derived Motion Winds product is produced using ABI Full Disk, CONUS, and Mesoscale coverage region observations.
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: ATMOSPHERE > ATMOSPHERIC WINDS
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0

citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: wind_speed
keyword: wind_from_direction
keyword: air_pressure
keyword: air_temperature
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted.
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) vector
spatialResolution: (MD_Resolution)
distance: Distance: 10
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
endPosition: now

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Mesoscale

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)

sequenceIdentifier:

MemberName:

aName: wind_direction

attributeType:

descriptor: wind vectors wind from direction measured positive clockwise from due north

units:

DerivedUnit:

identifier: degree
derivationUnitTerm: scaleFactor:

offset:

contentInfo: (MI_CoverageDescription)

attributeDescription:

RecordType: variable

contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)

sequenceIdentifier:

MemberName:

aName: wind_speed

attributeType:

descriptor: wind vector’s wind speed

units:

DerivedUnit:

identifier: m s\(^{-1}\)
derivationUnitTerm: derivationUnitTerm:

scaleFactor:

offset:

contentInfo: (MI_CoverageDescription)

attributeDescription:

RecordType: variable

contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)

sequenceIdentifier:

MemberName:

aName: pressure

attributeType:

descriptor: wind vector’s air pressure

units:

DerivedUnit:

identifier: hPa
derivationUnitTerm:
 derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: temperature
 attributeType:
 descriptor: wind vector's air temperature
 units:
 DerivedUnit:
 identifier: k
 derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) qualityInformation
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Derived Motion Winds data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) series
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
evaluationMethodDescription: Time between successive ABI images used to derive wind vectors, and ABI band-specific geospatial criteria for finding and tracking features; Start, midpoint, and end time of the wind vectors in the product, which corresponds to the middle Level 1b product image observation period; Number of vectors’ wind speeds whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the
vector’s wind speed values in the product file; Number of wind vectors in each of three atmospheric layers, and the minimum, maximum, mean, and standard deviation of the constituent wind vectors’ cloud top pressure values. These statistics are calculated using good quality wind vectors. The percentages of pixels assigned to each DQF value are also included in the product.

- **result:**
 - **report:** (DQ_CompletenessOmission)
 - **nameOfMeasure:** percent_uncorrectable_L0_errors
 - **evaluationMethodDescription:** Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 - **result:** (DQ_QuantitativeResult)
 - **valueUnit:**
 - **BaseUnit:**
 - **identifier:** percent
 - **unitsSystem:**
 - **value:**
 - **report:** (DQ_CompletenessOmission)
 - **nameOfMeasure:** percent_uncorrectable_GRB_errors
 - **evaluationMethodDescription:** percent data lost due to uncorrectable GRB errors
 - **result:** (DQ_QuantitativeResult)
 - **valueUnit:**
 - **BaseUnit:**
 - **identifier:** percent
 - **unitsSystem:**
 - **value:**

- **lineage:** (LI_Lineage)
- **processStep:** (LE_ProcessStep)
 - **description:** The Derived Motion Winds product is generated by the GOES-R ABI Derived Motion Winds ground processing algorithm. Wind speed and direction are determined by tracking environmental features, specifically cloud edges and clear sky moisture gradients, over a time series composed of three ABI observations. Two displacement vectors are produced for the two time adjacent observation pairs, and then averaged. The time associated with wind vectors in a Derived Motion Winds product file is the acquisition time associated with the middle observation. The algorithm performs several consistency checks on the derived wind information including a comparison with the NWP wind forecast to establish a confidence level for the wind vector and an estimate of its wind speed error. For each ABI band, algorithm processing occurs independently and separate product files are generated. The configuration of each retrieval is band dependent and is determined by the target type (clear sky water vapor or cloud), target box size, search window size (i.e. lag size), temporal spacing between image pairs, and the application of nested tracking of target sub-regions. This configuration information is included in the product metadata. Product files include data for each attempted wind retrieval. It is possible that one or more wind vectors in a product file have one or more null values in its data elements, which is indicated with the applicable variables’ fill values. When operating in ABI mode 3, there will be a delay in the production of mesoscale Derived Motion Wind product files when the ABI is commanded to observe a new mesoscale region. This is because the algorithm requires three successive product images. The amount of delay is approximately twice the required time between successive images, which is band-specific and managed as a parameter in the Level 2+
semi-static source data. The time between successive images value is included in the product.

processor: (CI_ResponsibleParty)
 organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
 role: (CI_RoleCode) processor
output: (LE_Source)
processedLevel: (MD_Identifier)
 authority: (CI_Citation)
 title: NOAA Processing Levels
 date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
 citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
 onlineResource: (CI_OnlineResource)
 role: (CI_RoleCode) publisher
 code: L2

dataMaintenance: (MD_MaintenanceInformation)
 maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
 maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
 operation: (MI_Operation)
 description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit
storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5
minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6
scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60
seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared
wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: http://www.goes-r.gov
 date:
 code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from
geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and
the in-situ space environment. The major functions of the GOES-R System are to support,
process, and distribute the data from its instruments, specifically the Advanced Baseline Imager
(ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and
XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer.
Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning
detection products generated by the GOES-R System (GRB), (2) support terrestrial and
oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission
(HRIT) data between earth terminals and relay the Emergency Managers Weather Information
Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of
distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs)
and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational
constellation provides coverage operationally from two locations, one at 75° West longitude and
the second at 137° West longitude.

instrument: (MI_Instrument)
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: http://www.goes-r.gov/spacesegment/abi.html
 date:
 code: GOES-17 ABI instrument_id (serial number)
 type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17
for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16
different spectral bands, including two visible channels, four near-infrared channels, and ten
infrared channels. The products generated from ABI observations provides spatial resolutions
between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of
storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to
weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn
tornadoes). The ABI has three scan modes that produce imagery data. The continuous full disk
mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3
concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5
minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6
scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60
seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared
wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.18 Hurricane Intensity Product ISO Series Metadata
The data points on GOES-R HIE products use the latitude_longitude CF grid mapping. The coordinates for the global latitude/longitude grid are latitude and longitude. In two-dimensional map space, the x-axis is at the equator, and the y-axis is at the prime (Greenwich) meridian. By convention, degrees north and degrees east are used for latitude and longitude, respectively.

code: latitude_longitude
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Hurricane Intensity Product
alternateTitle: Data short name (DSN): ABI-L2-HIEF-M3
alternateTitle: Data short name (DSN): ABI-L2-HIEF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-HIEF-*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The Hurricane Intensity product contains information about tropical cyclones along their trajectories from the time they are identified to the current time. Tropical cyclone information provided in the product includes its identity, location, maximum wind speed, Dvorak tropical cyclone current intensity number, detailed wind shear, cloud, and eye characteristics, strengthening and weakening state information, and the start, midpoint, and end observation time of the source ABI product image. Data quality information is not included in the product. A hurricane intensity product file is produced for each tropical cyclone. The units of measure for the maximum sustained wind speed value is meters per second. The advanced Dvorak technique tropical cyclone current and tropical intensity numbers are dimensionless quantities. The Hurricane Intensity product is produced using ABI Full Disk coverage region observations. Product data is produced when a tropical cyclone is in the ABI’s field of regard for both daytime and nighttime conditions.
pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
 name: netCDF
 version: 4
descriptiveKeywords: (MD_Keywords)
 keyword: ATMOSPHERE > ATMOSPHERIC PHENOMENA > HURRICANES
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
 keyword: dvorak_tropical_cyclone_current_intensity_number
 keyword: tropical_cyclone_maximum_sustained_wind_speed
 keyword: dvorak_tropical_number
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: CF Standard Name Table v27
date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) vector
spatialResolution: (MD_Resolution)
 distance:
 Distance: 2
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: -156.2995
eastBoundLongitude: 6.2995
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282

extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West

g e o g r a p h i c E l e m e n t: (E X _ G e o g r a p h i c B o u n d i n g B o x)
westBoundLongitude: 141.7005
eastBoundLongitude: -55.7005
southBoundLatitude: -81.3282
northBoundLatitude: 81.3282

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: wind_speed
attributeType:
descr i p t o r: ABI Level 2+ Hurricane Intensity: tropical cyclone’s maximum sustained wind speed
units:
DerivedUnit:
identifier: m s⁻¹

derivationUnitTerm:
derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
MemberName:
aName: CI_number
attributeType:
descr i p t o r: ABI Level 2+ Hurricane Intensity: advanced Dvorak technique tropical cyclone current intensity number (CI#)
units:
scaleFactor:
scaleFactor:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: final_T_number
 attributeType:
 descriptor: ABI Level 2+ Hurricane Intensity: advanced Dvorak technique final tropical number (T#)
 units:
 scaleFactor:
 offset:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
 level: (MD_ScopeCode) series
report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
evaluationMethodDescription: Observation time: J2000 epoch (seconds since 2000-01-01 12:00:00) mid-point between the start and end image scan in seconds associated with tropical cyclone intensity estimate; Observation time bounds: start and end time of each image scan associated with tropical cyclone intensity estimates over time; Cloud temperature annular average: cloud top temperature in cloud region annulus centered at storm center; Eye temperature standard deviation: standard deviation of brightness temperature values in eye region.
 result:
report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:
report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
 result: (DQ_QuantitativeResult)
The Hurricane Intensity product is generated by the GOES-R ABI Hurricane Intensity ground processing algorithm. The algorithm, which is the Advanced Dvorak Technique, is used to derive a set of Dvorak Tropical numbers and a Current Intensity number that map directly to a maximum sustained one minute wind speed using a set of pre-determined statistical relationships. The algorithm determines the intensity of a tropical cyclone by matching observed brightness temperature patterns in the current processed ABI Full Disk level 1b band 13 image with a central wavelength of 10.33 um to a set of pre-defined tropical cyclone structures. From this correlation, the center and scene type of the tropical cyclone are determined. The Tropical and Current Intensity numbers are determined based on the recent trend of strengthening or weakening, and pre-defined intensity variation thresholds that vary as a function of time.

processor: (CI_ResponsibleParty)
 organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
 role: (CI_RoleCode) processor

output: (LE_Source)
processedLevel: (MD_Identifier)
authority: (CI_Citation)
 title: NOAA Processing Levels
 date: (CI_Date)
 date: 2013-11
 dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
 organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
 onlineResource: (CI_OnlineResource)
 linkage: https://www.ngdc.noaa.gov/wiki/index.php?title=NOAA_Processing_Levels

role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.
instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.19 Fire (Hot Spot Characterization) Product ISO Series Metadata

```
(fileIdentifier: b015d6f0-b002-11e1-afa6-0800200c9a66  
language: eng  
characterSet: (MD_CharacterSetCode) utf8  
parentIdentifier: n/a  
hierarchyLevel: (MD_ScopeCode) series  
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Fire (Hot Spot Characterization) Product Collection  
contact: (CI_ResponsibleParty)  
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce  
contactInfo: (CI_Contact)  
address: (CI_Address)  
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor  
city: Silver Spring  
adминистraiveArea: MD  
postalCode: 20910  
country: USA  
electronicMailAddress: GOES-R@noaa.gov  
role: (CI_RoleCode) originator  
dateStamp: 2017-05-11  
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data  
dataSetURI: OR_ABI-L2-FDC-ISO-SERIES_c20171311305000.xml)
```
spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 5424
 resolution: Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 5424
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1500
 resolution: Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2500
 resolution: Distance: 2
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: Product Definition and Users Guide (PUG) Volume 5: Level 2 Products
 date: (CI_Date)
 date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for
geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

- **code**: goes_projection
- **codeSpace**: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)

citation: (CI_Citation)

- **title**: ABI Level 2+ Fire (Hot Spot Characterization) Product
- **alternateTitle**: Data short name (DSN): ABI-L2-FDCC-M3
- **alternateTitle**: Data short name (DSN): ABI-L2-FDCC-M4
- **alternateTitle**: Data short name (DSN): ABI-L2-FDCF-M3
- **alternateTitle**: Data short name (DSN): ABI-L2-FDCF-M4

date: (CI_Date)

- **date**: 2017-05-11
- **dateType**: creation

identifier: (MD_Identifier)

- **authority**: gov.nesdis.noaa
- **date**: 2014
- **dateType**: revision

citedResponsibleParty: (CI_ResponsibleParty)

- **organisationName**: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

- **deliveryPoint**: 1335 East-West Highway, SSMC1, 8th Floor
- **city**: Silver Spring
- **administrativeArea**: MD
- **postalCode**: 20910
- **country**: USA
- **electronicMailAddress**: goes-r@noaa.gov

role: (CI_RoleCode) originator

abstract: The Fire (HSC) product contains four images, one in the form of a fire mask, and the other three with pixel values identifying fire temperature, fire area, and fire radiative power. Pixel values in the fire mask image identify a fire category and diagnostic information associated with algorithm execution. The six fire categories include: Good quality or temporally filtered good quality fire pixel; Saturated fire pixel or temporally filtered saturated fire pixel; Cloud contaminated or temporally filtered cloud contaminated fire pixel; High probability or temporally filtered high probability fire pixel; Medium probability or temporally filtered high probability fire pixel; Low probability or temporally filtered high probability fire. Temporally filtered fire pixels
are those resulting from fire pixels that are in close proximity in both space and time. The product includes data quality information that provides an assessment of fire detection for on-earth pixels. The units of measure for the Fire (HSC) product quantities are for Mask: dimensionless; for Temperature: kelvin; for Area: square kilometers; for Radiative Power: megawatts. The Fire (HSC) product image is produced on the ABI fixed grid at 2 km resolution for Full Disk and CONUS coverage regions. Product data is produced under the following conditions: Existence of land; Geolocated source data to local zenith angles of 80 degrees, solar zenith angles between 10 and 180 degrees, and sunglint angles greater than 10 degrees.
resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
 classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance:
 Distance: 2
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: Mask
 attributeType:
 descriptor: ABI Level 2+ Fire (Hot Spot Characterization): Fire Mask
 units:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: Area
 attributeType:
 descriptor: ABI Level 2+ Fire (Hot Spot Characterization): Fire Area
 units:
 DerivedUnit:
 identifier: km2
 derivationUnitTerm:
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
MemberName:

- **aName:** Temp
- **attributeType:**
- **descriptor:** ABI Level 2+ Fire (Hot Spot Characterization): Fire Temperature
- **units:**
- **DerivedUnit:**
 - **identifier:** K
 - **derivationUnitTerm:**
 - **scaleFactor:**
 - **offset:**

contentInfo: (MI_CoverageDescription)

- **attributeDescription:**
 - **RecordType:** variable
 - **contentType:** (MD_CoverageContentTypeCode) physicalMeasurement
 - **dimension:** (MD_Band)
 - **sequenceIdentifier:**
 - **MemberName:**
 - **aName:** Power
 - **attributeType:**
 - **descriptor:** ABI Level 2+ Fire (Hot Spot Characterization): Fire Power
 - **units:**
 - **DerivedUnit:**
 - **identifier:** MW
 - **derivationUnitTerm:**
 - **derivationUnitTerm:**
 - **scaleFactor:**
 - **offset:**

contentInfo: (MI_CoverageDescription)

- **attributeDescription:**
 - **RecordType:** variable
 - **contentType:** (MD_CoverageContentTypeCode) thematicClassification
 - **dimension:** (MD_Band)
 - **sequenceIdentifier:**
 - **MemberName:**
 - **aName:** DQF
 - **attributeType:**
 - **descriptor:** ABI Level 2+ Fire (Hot Spot Characterization) data quality flags
 - **units:**

dataQualityInfo: (DQ_DataQuality)

- **scope:** (DQ_Scope)
- **level:** (MD_ScopeCode) series
report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of pixels with fire detected, but fire temperature, area and radiative power not reported; Number of pixels with fire temperature and area reported, but radiative power not reported; Number of fire temperature, fire area, and fire radiative power pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the values in the fire temperature, fire area, and fire radiative power product images. The fire pixel count statistics are calculated using good quality fire pixels where the fire mask for these pixels indicate at least medium probability of fire. The fire temperature, fire area, and fire radiative power minimum, maximum, mean and standard deviation statistics are calculated using good quality fire pixels where the fire mask for these pixels indicate definite fire. The percentages of pixels assigned to each DQF value are also included in the product.

result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit: BaseUnit: identifier: percent unitsSystem: value: report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_GRB_errors
 evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
 result: (DQ_QuantitativeResult)
 valueUnit: BaseUnit: identifier: percent unitsSystem: value:

lineage: (LI_Lineage)
 processStep: (LE_ProcessStep)
 description: The Fire product is generated by the GOES-R ABI Land Fire ground processing algorithm. The Fire algorithm is a dynamic multispectral thresholding algorithm that uses the differences in sensitivity to high temperature subpixel anomalies of ABI bands 7 and 14, with central wavelengths of 3.89 and 11.19 um, respectively. The algorithm consists of a series of screening tests, threshold tests, and calculations that are applied to each pixel. Estimates of subpixel fire area, temperature, and power are computed based on a screening. Additionally, subsequent analysis can introduce additional fire pixels in the fire mask for which fire properties are not derived from the source ABI data. Pixels in the product images with out of range values are assigned the minimum or maximum value in the valid range. Reflectance for band 2 and brightness temperature for band 15 are used in cloud tests but are not required to detect fires. The
algorithm maintains “time of last fire” intermediate data for each pixel that is used and updated for each execution of the algorithm.

processor: (CI_ResponsibleParty)
organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
role: (CI_RoleCode) processor
output: (LE_Source)
processedLevel: (MD_Identifier)
authority: (CI_Citation)
title: NOAA Processing Levels
date: (CI_Date)
date: 2013-11
dateType: (CI_DateTypeCode) revision
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: (CI_Contact)
role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis
stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/going-
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3
concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov

date:

code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov/spacesegment/abi.html

date:

code: GOES-17 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
5.1.20 Land Surface (Skin) Temperature Product ISO Series Metadata

(fileIdentifier: f22c3310-b00a-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Land Surface Temperature Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-11
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_ABI-L2-LST-ISO-SERIES_c20171311306000.xml

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 1086
resolution:
 Distance: 10
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 1086
resolution:
 Distance: 10
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk
spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1500
 resolution:
 Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2500
 resolution:
 Distance: 2
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkpointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 500
 resolution:
 Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 2
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkpointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
 referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: Product Definition and User’s Guide (PUG) Volume 5: Level 2 Products
 date: (CI_Date)
 date: 2014
 dateType: (CI_DateTypeCode) publication
 otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for
geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

- **code:** goes_projection
- **codeSpace:** http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)

citation: (CI_Citation)

- **title**: ABI Level 2+ Land Surface Temperature Product
- **alternateTitle**: Data short name (DSN): ABI-L2-LSTM1-M3
- **alternateTitle**: Data short name (DSN): ABI-L2-LSTM2-M3
- **alternateTitle**: Data short name (DSN): ABI-L2-LSTC-M3
- **alternateTitle**: Data short name (DSN): ABI-L2-LSTC-M4
- **alternateTitle**: Data short name (DSN): ABI-L2-LSTF-M3
- **alternateTitle**: Data short name (DSN): ABI-L2-LSTF-M4

date: (CI_Date)

- **date**: 2017-05-11
- **dateType**: (CI_DateTypeCode) creation

identifier: (MD_Identifier)

- **authority**: gov.nesdis.noaa
- **date**: (CI_Date)
 - **date**: 2014
 - **dateType**: (CI_DateTypeCode) revision

code: ABI-L2-LST*

citedResponsibleParty: (CI_ResponsibleParty)

- **organisationName**: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

- **deliveryPoint**: 1335 East-West Highway, SSMC1, 8th Floor
- **city**: Silver Spring
- **administrativeArea**: MD
- **postalCode**: 20910
- **country**: USA
- **electronicMailAddress**: goes-r@noaa.gov

role: (CI_RoleCode) originator

abstract: The Land Surface (Skin) Temperature product contains an image with pixel values identifying the instantaneous land surface skin temperature or surface radiometric temperature. Measured from the perspective of the satellite, the product is limited to clear conditions over land and represents the effective land temperature over an isothermal mixed pixel. The product includes data quality information that provides an assessment of the quality of the algorithm retrievals for on-earth pixels. The units of measure for the land surface (skin)
The temperature value is kelvin. The Land Surface (Skin) Temperature product image is produced on the ABI fixed grid at 10 km resolution for Full Disk and 2 km resolution for CONUS and Mesoscale coverage regions. Product data is produced under the following conditions: Existence of land; Clear sky; Geolocated source data to local zenith angles of 85 degrees for both daytime and nighttime conditions.

pointOfContact: (CI_ResponsibleParty)

organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)

address: (CI_Address)

deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor

city: Silver Spring

administrativeArea: MD

postalCode: 20910

country: USA

electronicMailAddress: GOES-R@noaa.gov

role: (CI_RoleCode) originator

resourceFormat: (MD_Format)

name: netCDF

version: 4

descriptiveKeywords: (MD_Keywords)

keyword: LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE

type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)

title: NASA Global Change Master Directory (GCMD) Earth Science Keywords

date: (CI_Date)

date: 2012-10

dateType: (CI_DateTypeCode) revision

edition: Version 7.0.0.0.0

citedResponsibleParty: (CI_ResponsibleParty)

role: (CI_RoleCode) author

descriptiveKeywords: (MD_Keywords)

keyword: surface_temperature

type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)

title: CF Standard Name Table v25

date: (CI_Date)

date: 2013-07-05

dateType: (CI_DateTypeCode) revision

resourceConstraints: (MD_SecurityConstraints)

useLimitation: Unrestricted

classification: (MD_ClassificationCode) unclassified

spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
- **distance:**
 - **Distance:** 10

spatialResolution: (MD_Resolution)
- **distance:**
 - **Distance:** 2

language: eng; USA

characterSet: (MD_CharacterSetCode) utf8

topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere

extent: (EX_Extent)
- **temporalElement:** (EX_TemporalExtent)
 - **beginPosition:** 2017-05-11
 - **endPosition:** now

extent: (EX_Extent)
- **geographicElement:** (EX_GeographicDescription)
 - **geographicIdentifier:** (MD_Identifier)
 - **code:** Full Disk - GOES-East

geographicElement: (EX_GeographicBoundingBox)
- **westBoundLongitude:** -156.2995
- **eastBoundLongitude:** 6.2995
- **southBoundLatitude:** -81.3282
- **northBoundLatitude:** 81.3282

extent: (EX_Extent)
- **geographicElement:** (EX_GeographicDescription)
 - **geographicIdentifier:** (MD_Identifier)
 - **code:** Full Disk - GOES-West

geographicElement: (EX_GeographicBoundingBox)
- **westBoundLongitude:** 141.7005
- **eastBoundLongitude:** -55.7005
- **southBoundLatitude:** -81.3282
- **northBoundLatitude:** 81.3282

extent: (EX_Extent)
- **geographicElement:** (EX_GeographicDescription)
 - **geographicIdentifier:** (MD_Identifier)
 - **code:** CONUS - GOES-East

geographicElement: (EX_GeographicBoundingBox)
- **westBoundLongitude:** -152.109282
- **eastBoundLongitude:** -52.946879
- **southBoundLatitude:** 14.571340
- **northBoundLatitude:** 56.761450

extent: (EX_Extent)
- **geographicElement:** (EX_GeographicDescription)
 - **geographicIdentifier:** (MD_Identifier)
 - **code:** CONUS - GOES-West

geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: 175.623576
eastBoundLongitude: -89.623576
southBoundLatitude: 14.571340
northBoundLatitude: 53.500062
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Mesoscale

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 aName: LST
 attributeType:
 descriptor: ABI Level 2+ Land Surface Temperature
units:
 DerivedUnit:
 identifier: K
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Land Surface Temperature data quality flags
units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
evaluationMethodDescription: Start, midpoint, and end time of the product image
observation period; Number of good retrievals; Number of good retrievals where valid land surface (skin) temperature data is determined. Number of land surface (skin) temperature pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the land surface (skin) temperature values in the product image. These statistics are calculated using pixels with good retrievals and a local zenith angle to 85 degrees. The percentages of pixels assigned to each retrieval quality value are also included in the product.

result:
result:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit: percent
unitsSystem: value:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit: percent
unitsSystem: value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The Land Surface Temperature product is generated by the GOES-R ABI Land Surface Temperature ground processing algorithm. This product is generated using a regression algorithm based on ABI brightness temperatures and brightness temperature differences for ABI window bands 14 and 15 with central wavelengths of 11.19 and 12.27 um, respectively and on Level 2+ processing parameters containing surface emissivity data. The algorithm applies difference regression coefficients for dry or moist atmospheric conditions as determined from the Total Precipitable Water product or the NWP total precipitable water dynamic processed ancillary data. The 10 km resolution Total Precipitable Water product is upscaled to 2 km using nearest neighbor to support the retrieval. The Land Surface Temperature algorithm operates on 2 km resolution pixels and generates products at this resolution for CONUS and Mesoscale coverage regions, and aggregates the retrieved land surface temperatures to 10 km resolution for the Full Disk coverage region.
processor: (CI_ResponsibleParty)
organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
role: (CI_RoleCode) processor
output: (LE_Source)
processedLevel: (MD_Identifier)
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://science.nasa.gov/missions/goes-r/

date:

code:
The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
title: http://www.goes-r.gov

date:

code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov/spacesegment/abi.html

date:

code: GOES-17 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasts use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.
5.1.21 Snow Cover Product ISO Series Metadata

(MI_Metadata)
 fileIdentifier: e7ce8b20-b00a-11e1-afa6-0800200c9a66
 language: eng
 characterSet: (MD_CharacterSetCode) utf8
 parentIdentifier: n/a
 hierarchyLevel: (MD_ScopeCode) series
 hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Fractional Snow Cover Product Collection
 contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
 role: (CI_RoleCode) originator
 dateStamp: 2017-05-11
 metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
 dataSetURI: OR_ABI-L2-FSC-ISO-SERIES_c20171311306000.xml

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 5424
 resolution:
 Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 5424
 resolution:
 Distance: 2
cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: Full Disk
spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 1500
 resolution:
 Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 2500
 resolution:
 Distance: 2
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: CONUS

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 500
 resolution:
 Distance: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 500
 resolution:
 Distance: 2
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
 checkPointAvailability: false
 pointInPixel: (MD_PixelOrientationCode) upperLeft
 transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
 referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: Product Definition and Users Guide (PUG) Volume 5: Level 2 Products
 date: (CI_Date)
 date: 2014
 dateType: (CI_DateTypeCode) publication
 otherCitationDetails: The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for
geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Fractional Snow Cover Product
alternateTitle: Data short name (DSN): ABI-L2-FSCM1-M3
alternateTitle: Data short name (DSN): ABI-L2-FSCM2-M3
alternateTitle: Data short name (DSN): ABI-L2-FSCC-M3
alternateTitle: Data short name (DSN): ABI-L2-FSCC-M4
alternateTitle: Data short name (DSN): ABI-L2-FSCF-M3
alternateTitle: Data short name (DSN): ABI-L2-FSCF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-FSC*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESSDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The Snow Cover product contains an image with pixel values identifying the fraction of their areas covered by snow. The product includes data quality information that provides an assessment of the snow cover data values for on-earth pixels. The units of measure for the snow cover value is percent. The Snow Cover product image is produced on the ABI fixed grid at 2 km resolution for Full Disk, CONUS and Mesoscale coverage regions. Product data is produced under the following conditions: Existence of land; Clear sky; Geolocated source data to
local zenith angles of 90 degrees and solar zenith angles of 90 degrees.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA

electronicMailAddress: GOES-R@noaa.gov

role: (CI_RoleCode) originator

resourceFormat: (MD_Format)
name: netCDF
version: 4

descriptiveKeywords: (MD_Keywords)
keyword: CRYOSPHERE > SNOW/ICE > SNOW COVER
type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0

citedResponsibleParty: (CI_ResponsibleParty)

role: (CI_RoleCode) author

descriptiveKeywords: (MD_Keywords)
keyword: surface_snow_area_fraction
type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
 date: 2013-07-05
 dateType: (CI_DateTypeCode) revision

resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified

spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
 distance:
 Distance: 2

language: eng; USA

topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -152.109282
 eastBoundLongitude: -52.946879
 southBoundLatitude: 14.571340
 northBoundLatitude: 56.761450
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.623576
 eastBoundLongitude: -89.623576
 southBoundLatitude: 14.571340
 northBoundLatitude: 53.500062
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Mesoscale
contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: FSC
 attributeType:
 descriptor: ABI Level 2+ Snow Cover, which contains fraction of pixel covered by snow
 units:
 DerivedUnit:
 identifier: percent
derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Snow Cover data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of snow cover pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the snow cover values in the product image; Minimum, maximum, mean, and standard deviation of the root mean square difference between the observed surface bidirectional reflectance values in ABI reflective bands 1, 2, 3, 5 and 6 with central wavelengths of 0.47, 0.64, 0.87, 1.61, and 2.25 um, and the corresponding modeled values derived from a multiple endmember mixing model values in the product image. These statistics are calculated using good quality pixels. The percentages of pixels assigned to each DQF value are also included in the product.
 result:
report: (DQ_CompletenessOmission)

nameOfMeasure: percent_uncorrectable_L0_errors

evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.

result: (DQ_QuantitativeResult)

valueUnit:

BaseUnit:

identifier: percent

unitsSystem:

value:

lineage: (L1_Lineage)

processStep: (LE_ProcessStep)

description: The Snow Cover product is generated by the GOES-R ABI Snow Cover ground processing algorithm. The algorithm relies on atmospherically-corrected surface reflectances derived as part of the determination of the surface albedo and does not use ABI Level 1b data inputs directly. The product is generated using spectral mixture analysis with a look-up table containing spectral reflectances of individual surfaces calculated from a radiative transfer model, and also a physical retrieval utilizing a spectral library lookup table to account for the dependency of reflectance on snow grain size, and local and solar zenith angles. The algorithm maintains an endmember memory file that contains two values per pixel indicating the endmember identifiers of the last modeled endmembers. Types of endmembers are land surface materials such as snow, vegetation, and rock, and are characterized using unique reflectance spectra based on modeled and field measurements. The endmemory memory file is re-initialized daily.

processor: (CI_ResponsibleParty)

organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)

role: (CI_RoleCode) processor

output: (LE_Source)

processedLevel: (MD_Identifier)

authority: (CI_Citation)

title: NOAA Processing Levels

date: (CI_Date)

date: 2013-11

dateType: (CL_DateTypeCode) revision

citedResponsibleParty: (CL_ResponsibleParty)

organisationName: National Oceanographic and atmospheric
Administration (NOAA) National Geophysical Data Center (NGDC)

contactInfo: (CI_Contact)
 onlineResource: (CI_OnlineResource)

role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
 maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
 maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
 operation: (MI_Operation)
 description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: http://science.nasa.gov/missions/goes-r/
 date:
 code:
 status: (MD_ProgressCode) onGoing

parentOperation: (MI_Platform)
 identifier: (MD_Identifier)
 authority: (CI_Citation)
 title: http://www.goes-r.gov
 date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager
(ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

Instrument: GOES-17 ABI

identifier: GOES-17 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.22 Sea Surface (Skin) Temperature Product ISO Series Metadata

fileIdentifier: d70be540-c38a-11e0-962b-0800200c9a66

language: eng

characterSet: utf8

parentIdentifier: n/a

hierarchyLevel: ISO Series Metadata for ABI Level 2+ Sea Surface (Skin) Temperature Product Collection

contact: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
The data points on GOES-R ABI level 1b and level 2+ products are on the ABI fixed grid. The ABI fixed grid defines the location of each data point to allow for geo-referencing. The ABI fixed grid is a projection that is mathematically based on the idealized location of the GOES-R satellite. The ABI fixed grid allows the data points in every product from a GOES-R satellite at a particular longitude in geostationary orbit generated over time to be at the
same location on the earth. All of the dynamics associated with an orbiting satellite are removed to accomplish this. The fixed grid is rectified to a GRS80 geoid viewed from the idealized geostationary position.

code: goes_projection
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: Advanced Baseline Imager (ABI) Level 2+ Sea Surface (Skin) Temperature Product
alternateTitle: Data short name (DSN): ABI-L2-SSTF-M3
alternateTitle: Data short name (DSN): ABI-L2-SSTF-M4
date: (CI_Date)
date: 2017-05-11
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-SSTF-*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The Sea Surface (Skin) Temperature product contains an image with pixel values identifying the variations in temperature of the top 10 um of the sea surface. These values are calibrated to the bulk temperature at a depth of 1 m associated with in situ temperature measurements. On average, the pixel values represent the bulk sea surface temperature, but horizontal spatial variations in the product image reveal features associated with the sea surface skin temperature. The product includes data quality information that provides an assessment of the sea surface (skin) temperature data values for on-earth pixels. The units of measure for the sea surface (skin) temperature value is kelvin. The Sea Surface (Skin) Temperature product image is produced on the ABI fixed grid at 2 km resolution for the Full Disk coverage region. Product data is produced under the following conditions: Existence of sea; Geolocated source data to local zenith angles of 90 degrees for both daytime and nighttime conditions.
pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data,
and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
resourceFormat: (MD_Format)
name: netCDF
version: 4
descriptiveKeywords: (MD_Keywords)
keyword: OCEANS > OCEAN TEMPERATURE > SEA SURFACE TEMPERATURE
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: sea_surface_skin_temperature
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance:
 Distance: 2
language: eng; USA
characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.2995
 eastBoundLongitude: 6.2995
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282
extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.7005
 eastBoundLongitude: -55.7005
 southBoundLatitude: -81.3282
 northBoundLatitude: 81.3282

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: SST
 attributeType:
 descriptor: ABI Level 2+ Sea Surface (Skin) Temperature
 units:
 DerivedUnit:
 identifier: K
derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
 attributeDescription:
 contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
MemberName:
 aName: DQF
attributeType:
descriptor: ABI Level 2+ Sea Surface (Skin) Temperature data quality flags
units:

<table>
<thead>
<tr>
<th>dataQualityInfo</th>
<th>(DQ_DataQuality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scope</td>
<td>(DQ_Scope)</td>
</tr>
<tr>
<td>level</td>
<td>(MD_ScopeCode) dataset</td>
</tr>
<tr>
<td>report</td>
<td>(DQ_QuantitativeAttributeAccuracy)</td>
</tr>
<tr>
<td>nameOfMeasure</td>
<td>Product summary statistics</td>
</tr>
<tr>
<td>evaluationMethodDescription</td>
<td>Start, midpoint, and end time of the product image observation period; Number of good quality sea surface (skin) temperature pixels; Number of degraded and severely degraded quality sea surface (skin) temperature pixels; Number of unprocessed on-earth pixels in the sea surface (skin) temperature image; Number of day, night, and twilight sea surface (skin) temperature pixels; Number of sea surface (skin) temperature pixels whose values are outside the required measurement range; Minimum, maximum, mean, and standard deviation of the land surface (skin) temperature values in the product image; Minimum, maximum, mean, and standard deviation of the difference in the observed and modeled brightness temperature for ABI band 7 with central wavelength of 3.89 um used during the nighttime only generation of the sea surface (skin) temperature data; Minimum, maximum, mean, and standard deviation of the difference in the observed and modeled brightness temperature for ABI bands 14 and 15 with central wavelengths of 11.19 and 12.27 um used during the daytime and nighttime generation of the sea surface (skin) temperature data. The number of good quality, day, night, twilight, and outlier statistics are calculated using geolocated sea pixels to a local zenith angle of 67 degrees. The degraded count statistics are calculated using geolocated sea pixels to a local zenith angle of 90 degrees. The sea surface (skin) temperature and brightness temperature difference statistics are calculated using good quality pixels to a local zenith angle of 67 degrees. The percentages of pixels assigned to each DQF value are also included in the product.</td>
</tr>
<tr>
<td>result</td>
<td>(DQ_CompletenessOmission)</td>
</tr>
<tr>
<td>nameOfMeasure</td>
<td>percent_uncorrectable_L0_errors</td>
</tr>
<tr>
<td>evaluationMethodDescription</td>
<td>Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.</td>
</tr>
<tr>
<td>result</td>
<td>(DQ_QuantitativeResult)</td>
</tr>
<tr>
<td>valueUnit</td>
<td></td>
</tr>
<tr>
<td>BaseUnit</td>
<td>percent</td>
</tr>
<tr>
<td>identifier</td>
<td></td>
</tr>
<tr>
<td>unitsSystem</td>
<td></td>
</tr>
<tr>
<td>value</td>
<td></td>
</tr>
<tr>
<td>report</td>
<td>(DQ_CompletenessOmission)</td>
</tr>
<tr>
<td>nameOfMeasure</td>
<td>percent_uncorrectable_GRB_errors</td>
</tr>
<tr>
<td>evaluationMethodDescription</td>
<td>percent data lost due to uncorrectable GRB errors</td>
</tr>
<tr>
<td>result</td>
<td>(DQ_QuantitativeResult)</td>
</tr>
</tbody>
</table>
The Sea Surface (Skin) Temperature product is generated by the GOES-R ABI Sea Surface (Skin) Temperature ground processing algorithm. This product is retrieved using a hybrid regression algorithm that incorporates observed brightness temperatures, clear sky brightness temperatures computed based on the Community Radiative Transfer Model (CRTM), and the Reynolds sea surface temperature. Regression coefficients are defined for daytime and for nighttime conditions. This algorithm can also be configured to execute in a standard regression configuration that does not rely on the CRTM inputs. An attribute of the primary data variable in the product file, “algorithm_type”, indicates the specific algorithm used. Both algorithms employ a multiband approach, relying on brightness temperature in ABI bands 7, 14, and 15 with central wavelengths 3.89, 11.19, and 12.27 um for nighttime, and ABI bands 14 and 15 for daytime.

Pixels in the product image with out-of-range values are assigned the minimum or maximum value in the valid range. The product is a composite, making use of multiple ABI Full Disk observations collected over a one hour period at fifteen minute intervals. The algorithm applies the hybrid regression for all ocean pixels regardless of cloud cover.

organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD)
role: processor
output: processedLevel: MD_Identifier
authority: title: NOAA Processing Levels
date: date: 2013-11
dateType: revision
citedResponsibleParty: organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)
contactInfo: onlineResource: (CI_Contact)
role: publisher
code: L2

metadataMaintenance: maintenanceAndUpdateFrequency: asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a
collection of datasets of a particular product that changes infrequently

```plaintext
acquisitionInformation: (MI_AcquisitionInformation)
  operation: (MI_Operation)
    description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

  identifier: (MD_Identifier)
    authority: (CI_Citation)
      title: http://science.nasa.gov/missions/goes-r/
    date:
    code:
  status: (MD_ProgressCode) onGoing

parentOperation:
  platform: (MI_Platform)
    identifier: (MD_Identifier)
      authority: (CI_Citation)
        title: http://www.goes-r.gov
    date:
    code: GOES-East (G16)
  description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of
```


distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.23 Downward Shortwave Radiation: Surface Product ISO Series Metadata

(MI_Metadata)
fileIdentifier: de00d810-b013-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Downward Shortwave Radiation: Surface Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2014-10-18
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
dataSetURI: OR_ABI-L2-DSR-ISO-SERIES_c20142911829410.xml

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 326
resolution:
 Distance: 50
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 326
resolution:
 Distance: 50
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 397
resolution:
 Distance: 25
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 169
resolution:
 Distance: 25
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS East

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 380
resolution:
 Distance: 25
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 156
resolution:
 Distance: 25
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS West

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 565
resolution:
 Distance: 5
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 888
resolution:
 Distance: 5
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Mesoscale

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
authority: (CI_Citation)
title: Product Definition and Users Guide (PUG) Volume 5: Level 2+ Products
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R Radiation products use the latitude_longitude CF grid mapping. The coordinates for the global latitude/longitude grid are latitude and longitude. In two-dimensional map space, the x-axis is at the equator, and the y-axis is at the prime (Greenwich) meridian. By convention, degrees north and degrees east are used for latitude and longitude, respectively.
code: latitude_longitude
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DataIdentification)
citation: (CI_Citation)
title: ABI Level 2+ Downward Shortwave Radiation: Surface Product
alternateTitle: Data short name (DSN): ABI-L2-DSRM1-M3
alternateTitle: Data short name (DSN): ABI-L2-DSRM2-M3
alternateTitle: Data short name (DSN): ABI-L2-DSRC-M3
alternateTitle: Data short name (DSN): ABI-L2-DSRC-M4
alternateTitle: Data short name (DSN): ABI-L2-DSRF-M3
alternateTitle: Data short name (DSN): ABI-L2-DSRF-M4
date: (CI_Date)
date: 2014-10-18
dateType: (CI_DateTypeCode) creation
identifier: (MD_Identifier)
authority: (CI_Citation)
title: gov.nesdis.noaa
date: (CI_Date)
date: 2014
dateType: (CI_DateTypeCode) revision
code: ABI-L2-DSR*
citedResponsibleParty: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator
abstract: The Downward Shortwave Radiation: Surface product contains an image with pixel values identifying the instantaneous total shortwave irradiance (flux) received at the Earth’s surface integrated over the 0.2 to 4.0 um wavelength bandpass. It includes contributions from direct solar radiation attenuated by the atmosphere and from diffuse radiation associated with scattering within the atmosphere. The product includes data quality information that provides an assessment of the downward shortwave radiation: surface data values for on-earth pixels. The units of measure for the downward shortwave radiation: surface value is watts per square meter. The Downward Shortwave Radiation: Surface product image is produced on a global latitude/longitude grid at 0.5 degree resolution for Full Disk, 0.25 degree resolution for CONUS, and 0.05 degree resolution for Mesoscale coverage regions. Product data is produced for geolocated source data to local zenith angles of 90 degrees and solar zenith angles to 90 degrees.
pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data,
and Information Services, NOAA, U.S. Department of Commerce

contactInfo: (CI_Contact)
address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator

resourceFormat: (MD_Format)
name: netCDF
version: 4

descriptiveKeywords: (MD_Keywords)
 keyword: ATMOSPHERE > ATMOSPHERIC RADIATION > SHORTWAVE RADIATION

type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
 date: (CI_Date)
 date: 2012-10
 dateType: (CI_DateTypeCode) revision
 edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author

descriptiveKeywords: (MD_Keywords)
 keyword: surface_downwelling_shortwave_flux_in_air

type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
 title: CF Standard Name Table v25
 date: (CI_Date)
 date: 2013-07-05
 dateType: (CI_DateTypeCode) revision

resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
 classification: (MD_ClassificationCode) unclassified

spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
 distance: Distance: 50
spatialResolution: (MD_Resolution)
 distance: Distance: 25
spatialResolution: (MD_Resolution)
distance:
 Distance: 5
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2014-10-18
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
gеographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -156.50
 eastBoundLongitude: 6.50
 southBoundLatitude: -81.50
 northBoundLatitude: 81.50
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
gеographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 141.50
 eastBoundLongitude: -55.50
 southBoundLatitude: -81.50
 northBoundLatitude: 81.50
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-East
gеographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -151.75
 eastBoundLongitude: -53.25
 southBoundLatitude: 14.25
 northBoundLatitude: 55.75
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
 code: CONUS - GOES-West
gеographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: 175.5
 eastBoundLongitude: -89.5
 southBoundLatitude: 14.25
 northBoundLatitude: 53.5
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Mesoscale

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DSR
 attributeType:
 descriptor: ABI Level 2+ Downward Shortwave Radiation: Surface
 units:
 DerivedUnit:
 identifier: W m-2
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Downward Shortwave Radiation: Surface data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) series
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of attempted retrievals; Number of attempted retrievals to local zenith angle of 70 degrees; Number of downward shortwave radiation: surface pixels whose values are outside the required measurement range; Cloud fraction in product image; Minimum, maximum, mean, and standard deviation of the solar zenith angle values for the product image’s
pixels; Minimum, maximum, mean, and standard deviation of the downward shortwave radiation: surface values in the product image. The attempted retrieval count, cloud fraction, and solar zenith angle statistics are calculated using geolocated pixels to a solar zenith angle of 90 degrees. The downward shortwave radiation: surface outlier count and other statistics are calculated using good quality pixels to a local zenith angle to 70 degrees and solar zenith angle to 70 degrees. The percentages of pixels assigned to each DQF value are also included in the product.

result:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_L0_errors
evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:
report: (DQ_CompletenessOmission)
nameOfMeasure: percent_uncorrectable_GRB_errors
evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
result: (DQ_QuantitativeResult)
valueUnit:
BaseUnit:
identifier: percent
unitsSystem:
value:
lineage: (LI_Lineage)
processStep: (LE_ProcessStep)
description: The Downward Shortwave Radiation: Surface product is generated by the GOES-R ABI Downward Shortwave Radiation: Surface and Reflected Shortwave Radiation: TOA ground processing algorithm. Depending on the availability of inputs, the algorithm performs either a direct or indirect retrieval of broadband transmittance and reflectance over four scene types: clear sky over no snow/ice; clear sky over snow/ice; water cloud, and; ice cloud. The direct retrieval is primary method. Computed atmospheric transmittance and reflectance are used to derive the shortwave fluxes at the surface and TOA. The direct retrieval path uses ABI products to estimate fluxes from Level 2 processing parameter lookup tables whose values are based on a forward radiative transfer model. When inputs needed for the direct retrieval path are not available, the algorithm uses the indirect retrieval path, invoking a multistep inversion scheme. The indirect retrieval path includes the calculation of a clear-sky snow/ice-free composite TOA albedo derived from the ABI reflectance observations over the previous 29 days. Both retrieval paths rely on primary inputs at 2 km resolution that are averaged over each scene type on the output global latitude/longitude grid. Grid cells within the product extent not represented by a direct mapping between the ABI fixed grid and the global latitude/longitude grid are assigned values based on the nearest neighbor. The coverage region included in the Full Disk and CONUS radiation products is the minimum bounding rectangle within the global latitude/longitude grid. In the case of the mesoscale coverage region, the radiation product data
structure dimensions are fixed and based on its maximum latitude/longitude extent on the ABI Full Disk. Pixels in the product image with out of range values are assigned the minimum or maximum value in the valid range.

```xml
<processor> (CI_ResponsableParty) organisationName: NESDIS/OSPO at NSOF (NOAA Satellite Operations Facility, Suitland, MD) role: (CI_RoleCode) processor output: (LE_Source) processedLevel: (MD_Identifier) authority: (CI_Citation) title: NOAA Processing Levels date: (CI_Date) date: 2013-11 dateType: (CI_DateTypeCode) revision citedResponsibleParty: (CI_ResponsibleParty) organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) contactInfo: (CI_Contact) onlineResource: (CI_OnlineResource) linkage: https://www.ngdc.noaa.gov/wiki/index.php?title=NOAA_Processing_levels role: (CI_RoleCode) publisher code: L2
```

```xml
<metadataMaintenance> (MD_MaintenanceInformation) maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently
```

```xml
<acquisitionInformation> (MI_AcquisitionInformation) operation: (MI_Operation) description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of
```

396 NON-Export Controlled Information
Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://science.nasa.gov/missions/goes-r/

date:

code:

status: (MD_ProgressCode) onGoing

parentOperation:

platform: (MI_Platform)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov

date:

code: GOES-East (G16)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov/spacesegment/abi.html

date:

code: GOES-16 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk
mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov

date:

code: GOES-West (G17)

description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)

identifier: (MD_Identifier)

authority: (CI_Citation)

title: http://www.goes-r.gov/spacesegment/abi.html

date:

code: GOES-17 ABI instrument_id (serial number)

type: Advanced Baseline Imager

description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornadoes). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60...
seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

(fileIdentifier: 02f5ddc0-b008-11e1-afa6-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for ABI Level 2+ Reflected Shortwave Radiation: Top-Of-Atmosphere Product Collection
contact: (CI_ResponsibleParty)
 organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
 contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
 city: Silver Spring
 administrativeArea: MD
 postalCode: 20910
 country: USA
 electronicMailAddress: GOES-R@noaa.gov
 role: (CI_RoleCode) originator
dateStamp: 2014-10-18
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
datasetURI: OR_ABI-L2-RSR-ISO-SERIES_c20142911843070.xml

spatialRepresentationInfo: (MD_Georectified)
 numberOfDimensions: 2
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) row
 dimensionSize: 652
 resolution:
 Distance: 25
 axisDimensionProperties: (MD_Dimension)
 dimensionName: (MD_DimensionNameTypeCode) column
 dimensionSize: 652
 resolution:
 Distance: 25
 cellGeometry: (MD_CellGeometryCode) area
 transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: Full Disk

spatialRepresentationInfo: (MD_Georectified)
numberOfDimensions: 2
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) row
dimensionSize: 156
resolution:
 Distance: 25
axisDimensionProperties: (MD_Dimension)
dimensionName: (MD_DimensionNameTypeCode) column
dimensionSize: 380
resolution:
 Distance: 25
cellGeometry: (MD_CellGeometryCode) area
transformationParameterAvailability: true
checkPointAvailability: false
pointInPixel: (MD_PixelOrientationCode) upperLeft
transformationDimensionDescription: CONUS

referenceSystemInfo: (MD_ReferenceSystem)
referenceSystemIdentifier: (RS_Identifier)
 authority: (CI_Citation)
 title: Product Definition and Users Guide (PUG) Volume 5: Level 2+ Products
date: (CI_Date)
 date: 2014
dateType: (CI_DateTypeCode) publication
otherCitationDetails: The data points on GOES-R Radiation products use the
latitude_longitude CF grid mapping. This grid mapping defines the canonical 2D geographical
coordinate system based upon latitude and longitude coordinates on a spherical Earth. It is
included so that the figure of the Earth can be described.
code: latitude_longitude
codeSpace: http://cfconventions.org/latest.html

identificationInfo: (MD_DatadIdentification)
citation: (CI_Citation)
 title: ABI Level 2+ Reflected Shortwave Radiation: Top-Of-Atmosphere Product
alternateTitle: Data short name (DSN): ABI-L2-RSRC-M3
alternateTitle: Data short name (DSN): ABI-L2-RSRC-M4
alternateTitle: Data short name (DSN): ABI-L2-RSRF-M3
alternateTitle: Data short name (DSN): ABI-L2-RSRF-M4
date: (CI_Date)
The Reflected Shortwave Radiation: TOA product contains an image with pixel values identifying the instantaneous total shortwave irradiance (flux) emerging at the Earth’s TOA integrated over the 0.2 to 4.0 um wavelength bandpass. It includes contributions from the solar radiation reflected upward by the Earth’s surface and that scattered by the atmosphere. The product includes data quality information that provides an assessment of the reflected shortwave radiation: TOA data values for on-earth pixels. The units of measure for the reflected shortwave radiation: TOA value is watts per square meter. The Reflected Shortwave Radiation: TOA product image is produced on a global latitude/longitude grid at 0.25 degree resolution for Full Disk and CONUS coverage regions. Product data is produced for geolocated source data to local zenith angles of 90 degrees and solar zenith angles to 90 degrees.
keyword: ATMOSPHERE > ATMOSPHERIC RADIATION > SHORTWAVE RADIATION

type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: toa_outgoing_shortwave_flux
type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: CF Standard Name Table v25
date: (CI_Date)
date: 2013-07-05
dateType: (CI_DateTypeCode) revision
resourceConstraints: (MD_SecurityConstraints)
useLimitation: Unrestricted
classification: (MD_ClassificationCode) unclassified
spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid
spatialResolution: (MD_Resolution)
distance:
 Distance: 25
language: eng; USA
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
extent:
 TimePeriod:
 beginPosition: 2014-10-18
 endPosition: now
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-East
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: -156.50
eastBoundLongitude: 6.50
southBoundLatitude: -81.50
northBoundLatitude: 81.50
extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: Full Disk - GOES-West
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: 141.50
eastBoundLongitude: -55.50
southBoundLatitude: -81.50
northBoundLatitude: 81.50

extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: CONUS - GOES-East
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: -151.75
eastBoundLongitude: -53.25
southBoundLatitude: 14.25
northBoundLatitude: 55.75

extent: (EX_Extent)
geographicElement: (EX_GeographicDescription)
geographicIdentifier: (MD_Identifier)
code: CONUS - GOES-West
geographicElement: (EX_GeographicBoundingBox)
westBoundLongitude: 175.5
eastBoundLongitude: -89.5
southBoundLatitude: 14.50
northBoundLatitude: 53.5

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
aName: RSR
attributeType:
dercriptor: ABI Level 2+ Reflected Shortwave Radiation: TOA
units:
 DerivedUnit:
 identifier: W m-2
derivationUnitTerm:
derivationUnitTerm:
scaleFactor:
offset:
contentInfo: (MI_CoverageDescription)
 attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) thematicClassification
 dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: DQF
 attributeType:
 descriptor: ABI Level 2+ Reflected Shortwave Radiation: TOA data quality flags
 units:

 dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) series
 report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Start, midpoint, and end time of the product image observation period; Number of attempted retrievals; Number of attempted retrievals to local zenith angle of 70 degrees; Number of reflected shortwave radiation: TOA pixels whose values are outside the required measurement range; Cloud fraction in product image; Minimum, maximum, mean, and standard deviation of the solar zenith angle values for the product image’s pixels; Minimum, maximum, mean, and standard deviation of the reflected shortwave radiation: TOA values in the product image. The attempted retrieval count, cloud fraction, and solar zenith angle statistics are calculated using geolocated pixels to a solar zenith angle of 90 degrees. The downward shortwave radiation: surface outlier count and other statistics are calculated using good quality pixels to a local zenith angle to 70 degrees and solar zenith angle to 70 degrees. The percentages of pixels assigned to each DQF value are also included in the product.
 result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
 identifier: percent
 unitsSystem:
 value:

 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_GRB_errors
 evaluationMethodDescription: percent data lost due to uncorrectable GRB errors
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
The Reflected Shortwave Radiation: TOA product is generated by the GOES-R ABI Downward Shortwave Radiation: Surface and Reflected Shortwave Radiation: TOA ground processing algorithm. Depending on the availability of inputs, the algorithm performs either a “direct” or “indirect” retrieval of broadband transmittance and reflectance over four scene types: clear sky over no snow/ice; clear sky over snow/ice; water cloud, and; ice cloud. The “direct” retrieval is primary method. Computed atmospheric transmittance and reflectance are used to derive the shortwave fluxes at the surface and TOA. The “direct” retrieval path uses ABI products to estimate fluxes from Level 2 processing parameter lookup tables whose values are based on a forward radiative transfer model. When inputs needed for the “direct” retrieval path are not available, the algorithm uses the “indirect” retrieval path, invoking a multistep inversion scheme. The “indirect” retrieval path includes the calculation of a clear-sky snow/ice-free composited TOA albedo derived from the ABI reflectance observations over the previous 29 days. Both retrieval paths rely on primary inputs at 2 km resolution that are averaged over each scene type on the output global latitude/longitude grid. Grid cells within the product extent not represented by a direct mapping between the ABI fixed grid and the global latitude/longitude grid are assigned values based on the nearest neighbor. The coverage region included in the Full Disk and CONUS radiation products is the minimum bounding rectangle within the global latitude/longitude grid. In the case of the mesoscale coverage region, the radiation product data structure dimensions are fixed and based on its maximum latitude/longitude extent on the ABI Full Disk. Pixels in the product image with out of range values are assigned the minimum or maximum value in the valid range.
metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: ISO Series metadata contain quasi-static general information about a collection of datasets of a particular product that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational life-cycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:

code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:

code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning
detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date:
code: GOES-16 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-16 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-16 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs)
and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/abi.html
date: code: GOES-17 ABI instrument_id (serial number)
type: Advanced Baseline Imager
description: The Advanced Baseline Imager is the primary instrument on GOES-17 for imaging Earth’s weather, climate, and environment. The ABI observes the Earth at 16 different spectral bands, including two visible channels, four near-infrared channels, and ten infrared channels. The products generated from ABI observations provides spatial resolutions between 0.5 and 2.0 km. Forecasters use these high resolution images to track the development of storms in their early stages. The GOES-17 ABI is used for a wide range of applications related to weather, oceans, land, climate, and hazards (fires, volcanoes, hurricanes, and storms that spawn tornados). The ABI has three scan modes that produce imagery data. The continuous full disk mode (Mode 4) provides uninterrupted scans of the full disk every 5 minutes. Mode 3 concurrently allows full disk imagery every 15 minutes, the continental US (CONUS) every 5 minutes, and two interleaved mesoscale regions with each viewed every 60 seconds. And Mode 6 scans the full disk every 10 minutes, CONUS every 5 minutes, and mesoscale regions every 60 seconds. The ABI is calibrated to an accuracy of 3% (1 σ) radiance for visible and near-infrared wavelengths. For infrared channels, the ABI is accurate to 1K (1 σ) at 300K.

5.1.25 Surface Albedo Product
The current ground system baseline does not produce the Surface Albedo product.

5.1.26 Lightning Detection Product ISO Series Metadata

(MI_Metadata)
fileIdentifier: f5816f53-fd6d-11e3-a3ac-0800200c9a66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentId: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for GLM Level 2+ Lightning Detection Product Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
The data points on GOES-R GLM products use the latitude_longitude CF grid mapping. This grid mapping defines the canonical 2D geographical coordinate system based upon latitude and longitude coordinates on a spherical Earth. It is included so that the figure of the Earth can be described.

code: latitude_longitude
codeSpace: http://cfconventions.org/latest.html
The Lightning Detection product contains a list of lightning flashes, and their constituent groups and events. The definition of and relationship among flashes, groups, and events are governed by the following spatial and temporal characteristics: An event represents the signal detected from the cloud top associated with a lightning emission in an individual sensor pixel for a 2 ms integration period; A group represents the events detected in adjacent sensor pixels for the same integration period as an event; A flash represents a series of measurements constrained by temporal and spatial extent thresholds that are associated with one or more groups. The parent, child relationship among specific flashes, groups, and events is stored in the product. Data for each flash includes an energy-weighted centroid latitude, longitude location, time span of occurrence, amount of radiant energy, and coverage area. Data for each group includes an energy-weighted centroid latitude, longitude location, mean time of occurrence, amount of radiant energy, and coverage area. Data for each event includes a latitude, longitude location, time of occurrence, and amount of radiant energy. The product includes data quality information for each flash and group. A Lightning Detection product file contains a set of flashes, and its constituent groups and events for a 20 second period. The units of measure for the flash, group, and event radiant energy values is joules. The units of measure for the flash and group coverage areas is square kilometers.

pointOfContact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
 address: (CI_Address)
 deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: goes-r@noaa.gov
role: (CI_RoleCode) originator

resourceFormat: (MD_Format)
name: netCDF
version: 4

descriptiveKeywords: (MD_Keyword)
keyword: ATMOSPHERE > ATMOSPHERIC ELECTRICITY > LIGHTNING
keyword: ATMOSPHERE > ATMOSPHERIC PHENOMENA > LIGHTNING
type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
edition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
 role: (CI_RoleCode) author

descriptiveKeywords: (MD_Keywords)
 keyword: lightning_radiant_energy
 type: (MD_KeywordTypeCode) theme

thesaurusName: (CI_Citation)
 title: CF Standard Name Table v25
 date: (CI_Date)
 date: 2013-07-05
 dateType: (CI_DateTypeCode) revision

resourceConstraints: (MD_SecurityConstraints)
 useLimitation: Unrestricted
 classification: (MD_ClassificationCode) unclassified

spatialRepresentationType: (MD_SpatialRepresentationTypeCode) grid

spatialResolution: (MD_Resolution)
 distance:
 Distance: 8

language: eng; USA
characterSet: (MD_CharacterSetCode) utf8

extent: (EX_Extent)
 temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-East
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -141.56
 eastBoundLongitude: -8.44
 southBoundLatitude: -66.56
 northBoundLatitude: 66.56

extent: (EX_Extent)
 geographicElement: (EX_GeographicDescription)
 geographicIdentifier: (MD_Identifier)
 code: Full Disk - GOES-West
 geographicElement: (EX_GeographicBoundingBox)
 westBoundLongitude: -203.56
 eastBoundLongitude: -70.44
 southBoundLatitude: -66.56
 northBoundLatitude: 66.56
northBoundLatitude: 66.56

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
rangeElementDescription: (MI_RangeElementDescription)
 name: event_lat
 definition: latitude degrees north
rangeElement:
 Record: GLM L2+ Lightning Detection: event latitude coordinate

rangeElementDescription: (MI_RangeElementDescription)
 name: event_lon
 definition: longitude degrees east
rangeElement:
 Record: GLM L2+ Lightning Detection: event longitude coordinate

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: event_time_offset
 attributeType:
 descriptor: GLM Level 2+ Lightning Detection: event’s time of occurrence
 units:
 DerivedUnit:
 identifier: milliseconds since start time of product
derivationUnitTerm:
 derivationUnitTerm:
scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: event_energy
 attributeType:
Product Definition and User’s Guide (PUG)

Appendix X

08 March 2019 DCN 7035538, Revision G.2

contentInfo: (MI_CoverageDescription)

attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)

sequenceIdentifier:
 MemberName:
 aName: group_time_offset
 attributeType:
 descriptor: GLM Level 2+ Lightning Detection: mean time of group’s constituent events’ times of occurrence
 units:
 DerivedUnit:
 identifier: milliseconds since start time of product
 derivationUnitTerm:
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)

attributeDescription:
 RecordType: variable
 contentType: (MD_CoverageContentTypeCode) physicalMeasurement
 dimension: (MD_Band)

sequenceIdentifier:
 MemberName:
 aName: group_energy
 attributeType:
 descriptor: GLM Level 2+ Lightning Detection: group radiant energy
 units:
 DerivedUnit:
 identifier: J
 derivationUnitTerm:
 derivationUnitTerm:
 scaleFactor:
 offset:
contentInfo: (MI_CoverageDescription)

attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: group_area
 attributeType:
 descriptor: GLM Level 2+ Lightning Detection: group area coverage (pixels containing at least one constituent event only)
 units:
 DerivedUnit:
 identifier: km2
 derivationUnitTerm:
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)

attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: flash_time_offset_of_first_event
 attributeType:
 descriptor: GLM Level 2+ Lightning Detection: time of occurrence of first constituent event in flash
 units:
 DerivedUnit:
 identifier: milliseconds since start time of product
 derivationUnitTerm:
 derivationUnitTerm:
 scaleFactor:
 offset:

contentInfo: (MI_CoverageDescription)

attributeDescription:
RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
aName: flash_time_offset_of_last_event
attributeType:
descriptor: GLM Level 2+ Lightning Detection: time of occurrence of last constituent event in flash
units:
DerivedUnit:
 identifier: milliseconds since start time of product
derivationUnitTerm:
derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: flash_energy
attributeType:
 descriptor: GLM Level 2+ Lightning Detection: flash radiant energy
units:
 DerivedUnit:
 identifier: J
derivationUnitTerm:
scaleFactor:
offset:

contentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) physicalMeasurement
dimension: (MD_Band)
sequenceIdentifier:
 MemberName:
 aName: flash_area
attributeType:
 descriptor: GLM Level 2+ Lightning Detection: flash area coverage (pixels containing at least one constituent event only)
units:
 DerivedUnit:
 identifier: km2
derivationUnitTerm:
derivationUnitTerm:
scaleFactor:
offset:

ccontentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: group_quality_flag
 attributeType:
 descriptor: GLM Level 2+ Lightning Detection: group data quality flags
 units:

ccontentInfo: (MI_CoverageDescription)
attributeDescription:
 RecordType: variable
contentType: (MD_CoverageContentTypeCode) thematicClassification
dimension: (MD_Band)
 sequenceIdentifier:
 MemberName:
 aName: flash_quality_flag
 attributeType:
 descriptor: GLM Level 2+ Lightning Detection: flash data quality flags
 units:

dataQualityInfo: (DQ_DataQuality)
scope: (DQ_Scope)
 level: (MD_ScopeCode) dataset
report: (DQ_QuantitativeAttributeAccuracy)
 nameOfMeasure: Product summary statistics
 evaluationMethodDescription: Approximate start and end time of the observation period; Number of flashes, groups, and events; Satellite yaw flip configuration. The percentages of pixels assigned to each flash and group DQF value are also included in the product.
 result:
 report: (DQ_CompletenessOmission)
 nameOfMeasure: percent_uncorrectable_L0_errors
 evaluationMethodDescription: Percentage of Raw Data CCSDS Channel Access Data Units (CADUs) received with bit errors too numerous to be corrected by the Low Density Parity Check Forward Error Correction coding.
 result: (DQ_QuantitativeResult)
 valueUnit:
 BaseUnit:
The Lightning Detection product is generated by the sequential execution of Level 0, Level 1b and Level 2+ ground processing algorithms. The Level 2+ algorithm is the GOES-R GLM Lightning Cluster-Filter algorithm. The Level 0 algorithm decompresses and extracts events and GLM background image data from the CCSDS packets. The GLM instrument detects areas of potential lightning by capturing optical images of the Earth in its field of view, and identifying potential lightning events based on transient emissions from the tops of cloud. GLM Level 1b algorithm ground processing filters false lightning events using spatial and temporal thresholds and tracking tests. Each event remaining after filtering is radiometrically corrected, navigated to latitude, longitude coordinates, and time-tagged. The time-tag is corrected for light propagation time from cloud to satellite. The Level 2+ Lightning Detection algorithm clusters the events into groups and flashes based on spatial and temporal threshold parameters. Events, groups, and flashes are related in a tree-like structure with each flash made up of a unique set of groups and each group made up of a unique set of events. For each group and flash, the centroid location is its optically-weighted position, the energy is the sum of its events’ energies, and its area is the sum of the areas covered by its events’ pixels. Flashes from cloud-to-ground lightning and intra-cloud lightning are not distinguished. The wavelength of the radiant energy sensed by the instrument is from 776.87 to 777.87 nm at half the maximum of the spectral response function. The Level 1b and Level 2+ processing algorithms are executed at a cadence of once per second. The flashes for which processing has completed are included in the 20 second products. This means that event, group, time stamp values may be prior to the 20 second period associated with the particular product instance. These algorithms are designed subject to requirements for the maximum event, group, and flash rates to ensure that ground system processing operates at the data rate for lightning in the sensor’s field of view.

processor: (CI_ResponsibleParty)

organisationName: WCDAS (Wallops Command and Data Acquisition Station, Wallops Island, VA), RBU (Remote Backup Unit, Fairmont, WV)

role: (CI_RoleCode) processor

processor: (CI_ResponsibleParty)

organisationName: RBU (Remote Backup Unit, Fairmont, WV)

role: (CI_RoleCode) processor

output: (LE_Source)

processedLevel: (MD_Identifier)

authority: (CI_Citation)

title: NOAA Processing Levels

date: (CI_Date)

date: 2013-11

dateType: (CI_DateTypeCode) revision

citedResponsibleParty: (CI_ResponsibleParty)

organisationName: National Oceanographic and atmospheric Administration (NOAA) National Geophysical Data Center (NGDC)

contactInfo: (CI_Contact)

onlineResource: (CI_OnlineResource)
role: (CI_RoleCode) publisher
code: L2

metadataMaintenance: (MD_MaintenanceInformation)
maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a product line that changes infrequently

acquisitionInformation: (MI_AcquisitionInformation)
operation: (MI_Operation)
description: The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the United States Government geostationary weather satellite series having an operational lifecycle from 2016 to the 2030s. The advanced spacecraft and instrument technology used on the GOES-R series result in more timely and accurate forecasts and warnings than previous generations, including the capability to image its near hemispherical field of view in five minutes. The sixteen imaging channels supporting product resolutions between 0.5 and 2.0 km, and lightning detection capability improves support for the detection and observations of meteorological phenomena that directly affect public safety, protection of property, and ultimately, economic health and development. The GOES-R series was a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). The GOES-R satellite provides continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. It is the primary tool for the detection and tracking of hurricanes and severe weather and is a key enabler for fulfilling NOAA’s goals of Water and Weather, Climate, Commerce, and Ecosystem. The GOES-R spacecraft is 3-axis stabilized and designed for 10 years of on-orbit operation preceded by up to 5 years of on-orbit storage. The satellite operates through periodic station-keeping and momentum transfer maneuvers, which allow for near-continuous instrument observations.

identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://science.nasa.gov/missions/goes-r/
date:
code:
status: (MD_ProgressCode) onGoing
parentOperation:
platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-East (G16)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and
the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment/glm.html
date:
code: GOES-16 GLM serial number
type: Geostationary Lightning Mapper
description: The Geostationary Lightning Mapper (GLM) is an optical transient detector and imager operating in the near-IR that maps total lightning (in-cloud and cloud-to-ground) activity with near uniform spatial resolution of approximately 8 km continuously day and night over the Americas and adjacent ocean regions. The GLM provides early indication of storm intensification and severe weather events, improved tornado warning lead time, and data for long-term climate variability studies. The GLM provides information to identify growing, active, and potentially destructive thunderstorms over land as well as ocean areas.

platform: (MI_Platform)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov
date:
code: GOES-West (G17)
description: The GOES-R System acquires and disseminates environmental data from geostationary orbit. The system observes the Earth's surface and atmosphere, solar activity, and the in-situ space environment. The major functions of the GOES-R System are to support, process, and distribute the data from its instruments, specifically the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), EUVS and XRS Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS) and Magnetometer. Other functions of the GOES-R System are to: (1) rebroadcast Level 1b and Level 2+ lightning detection products generated by the GOES-R System (GRB), (2) support terrestrial and oceanographic Data Collection Platforms (DCPs), (3) relay High Rate Information Transmission (HRIT) data between earth terminals and relay the Emergency Managers Weather Information Network (EMWIN) broadcast on the HRIT/EMWIN link, and (4) provide rapid detection of distress messages from the Search and Rescue (SAR) Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs). The GOES operational constellation provides coverage operationally from two locations, one at 75° West longitude and
the second at 137° West longitude.

instrument: (MI_Instrument)
identifier: (MD_Identifier)
authority: (CI_Citation)
title: http://www.goes-r.gov/spacesegment(glm.html
date: code: GOES-17 GLM serial number
type: Geostationary Lightning Mapper
description: The Geostationary Lightning Mapper (GLM) is an optical transient detector and imager operating in the near-IR that maps total lightning (in-cloud and cloud-to-ground) activity with near uniform spatial resolution of approximately 8 km continuously day and night over the Americas and adjacent ocean regions. The GLM provides early indication of storm intensification and severe weather events, improved tornado warning lead time, and data for long-term climate variability studies. The GLM provides information to identify growing, active, and potentially destructive thunderstorms over land as well as ocean areas.

5.2 Level 2+ Data

5.2.1 Level 2+ Semi-Static Source Data

(MI_Metadata)
fileIdentifier: 10d80d3e-ef77-11e5-9ce9-5e5517507c66
language: eng
characterSet: (MD_CharacterSetCode) utf8
parentIdentifier: n/a
hierarchyLevel: (MD_ScopeCode) series
hierarchyLevelName: ISO Series Metadata for GOES-R L2 Processing Parameters Collection
contact: (CI_ResponsibleParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce
contactInfo: (CI_Contact)
address: (CI_Address)
deliveryPoint: 1335 East-West Highway, SSMC1, 8th Floor
city: Silver Spring
administrativeArea: MD
postalCode: 20910
country: USA
electronicMailAddress: GOES-R@noaa.gov
role: (CI_RoleCode) originator
dateStamp: 2017-05-15
metadataStandardName: ISO 19115-2 Geographic Information - Metadata Part 2 Extensions for imagery and gridded data
metadataStandardVersion: ISO 19115-2:2009(E)
dataSetURI: OR_PARM-L2-ISO-SERIES_c20171351618000.xml
Processing parameters are used as a direct input to the GOES-R ground processing algorithms. There are three categories of semi-static source data used in the Advanced Baseline Imager (ABI) Level 2 ground processing algorithm, 1) Algorithm-specific parameters, such as qualification thresholds and limits, look-up tables, conversion factors, and minimum and maximum valid ranges, 2) Common library parameters, such as band wavelength maps, Planck look-up tables, pixel displacement parameters, and other constant values, 3) Gridded parameters, such as parameters used in projection and mapping. Geostationary Lightning Mapper (GLM) uses radiometric calibration parameters (associated with the instrument's observing characteristics); geometric calibration parameters (associated with the precise look angle and size of the field of view); as well as algorithm processing parameters (associated with configurable decision-making logic in the algorithm as well as spatial and temporal thresholds, look up tables and scales an offsets applied to output values.
5.2.2 Level 2+ Algorithm Packages

(fileIdentifier: 808dfb20-3a75-11e3-aa6e-0800200c9a66
language: eng
characterSet: utf8
parentIdentifier: n/a)
Each Algorithm Package includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), and descriptive information. Each ATBD will include an overview, logic flow, assumptions, theoretical/math description, limitations, exception handling, inputs/outputs, and software implementation considerations.

pointOfContact: (CI_OriginatorParty)
organisationName: DOC/NOAA/NESDIS > National Environmental Satellite, Data, and Information Services, NOAA, U.S. Department of Commerce

resourceFormat: (MD_Format)
name: zip
version:
descriptiveKeywords: (MD_Keywords)
keyword: Earth Observation Satellites > GOES (Geostationary Operational Environmental Satellite) > GOES-R

type: (MD_KeywordTypeCode) theme
thesaurusName: (CI_Citation)
title: NASA Global Change Master Directory (GCMD) Earth Science Keywords
date: (CI_Date)
date: 2012-10
dateType: (CI_DateTypeCode) revision
dition: Version 7.0.0.0.0
citedResponsibleParty: (CI_ResponsibleParty)
role: (CI_RoleCode) author
descriptiveKeywords: (MD_Keywords)
keyword: Algorithm Package

resourceConstraints: (MD_SecurityConstraints)

useLimitation: Unrestricted
classification: (MD_ClassificationCode)
language: eng; USA

characterSet: (MD_CharacterSetCode) utf8
topicCategory: (MD_TopicCategoryCode) climatologyMeteorologyAtmosphere
extent: (EX_Extent)
temporalElement: (EX_TemporalExtent)
 extent:
 TimePeriod:
 beginPosition: 2017-05-11
 endPosition: now

dataQualityInfo: (DQ_DataQuality)
 scope: (DQ_Scope)
 level: (MD_ScopeCode) series
 lineage: (LI_Lineage)
 source: (LI_Source)
 description: Includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), for the following algorithms: Advanced Baseline Imager (ABI) L2 Cloud and Moisture Imagery Channel 1 through ABI L2 Cloud and Moisture Imagery Channel 16 algorithms and the ABI L2 Cloud and Moisture Imagery Multiband Algorithm, and all ABI L2 derived product algorithms.
 source: (LI_Source)
 description: Includes the Algorithm Theoretical Basis Document (ATBD), data files (synthetic input, output, and ancillary), for the following algorithm: Geostationary Lightning Mapper (GLM).

metadataMaintenance: (MD_MaintenanceInformation)
 maintenanceAndUpdateFrequency: (MD_MaintenanceFrequencyCode) asNeeded
 maintenanceNote: GOES-R ISO Series metadata contain quasi-static general information about a collection of datasets of a product line that changes infrequently.

6.0 ISO SERIES METADATA FILENAME CONVENTIONS
The main volume of the PUG contains a summary level description of the filename conventions used for all GOES-R product and data files. This appendix contains the detailed filename conventions for Level 0, 1b, and 2+ product and data ISO series metadata.
As discussed in the main volume of the PUG, filenames consist of a set of string fields delimited by an underscore or a period that are concatenated together. The content and format of several of the filename string fields are common across more than one of the ISO series metadata product and data filenames. Refer to Table 6.0-1, Common Filename String Fields.

<table>
<thead>
<tr>
<th>Common String Field</th>
<th>Description</th>
<th>Values and Meanings</th>
</tr>
</thead>
</table>
Table 6.0-2, Appendix X Filename Convention Paragraphs for Specific ISO Series Metadata Types, identifies the subordinate paragraph where ISO series metadata are defined for GOES-R products and data. In addition, example filenames are included in the subordinate paragraphs.

Table 6.0-2 Appendix X Filename Convention Paragraphs for Specific ISO Series Metadata Types

<table>
<thead>
<tr>
<th>Level 1b Product or Data Types</th>
<th>Appendix X Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0 Products</td>
<td>Paragraph 6.1</td>
</tr>
<tr>
<td>Level 1b Products and Data, and GRB Information</td>
<td>Paragraph 6.2</td>
</tr>
<tr>
<td>Level 2+ Products and Data</td>
<td>Paragraph 6.3</td>
</tr>
</tbody>
</table>

6.1 Level 0 Products

Level 0 product ISO series metadata filenames are assembled using filename string fields as follows:

<DSN>_Version.<File Extension>

Different ISO series metadata files have unique DSNs. Refer to Table 6.1, Level 0 ISO Series Metadata DSNs.

Table 6.1 Level 0 ISO Series Metadata DSNs

<table>
<thead>
<tr>
<th>Type of Level 1b Product or Data</th>
<th>ISO Series Metadata DSN</th>
<th>Specific Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0 Product</td>
<td>OR_ABI-L0-ISO-SERIES</td>
<td>ABI Level 0 Product</td>
</tr>
<tr>
<td></td>
<td>OR_GLM-L0-ISO-SERIES</td>
<td>GLM Level 0 Product</td>
</tr>
<tr>
<td></td>
<td>OR_SUVI-L0-ISO-SERIES</td>
<td>SUVI Level 0 Product</td>
</tr>
<tr>
<td></td>
<td>OR_EXIS-L0-ISO-SERIES</td>
<td>EXIS Level 0 Product</td>
</tr>
<tr>
<td></td>
<td>OR_SEIS-L0-ISO-SERIES</td>
<td>SEISS Level 0 Product</td>
</tr>
<tr>
<td></td>
<td>OR_MAG-L0-ISO-SERIES</td>
<td>Magnetometer Level 0 Product</td>
</tr>
</tbody>
</table>

The file extension for ISO series metadata files is “.xml”.

The filename for the third major version, second minor revision to SEISS Level 0 ISO series metadata is: “OR_SEISS-L0-ISO-SERIES_v0302.xml”

6.2 Level 1b Products and Data

Level 1b ISO series metadata filenames are assembled using filename string fields as follows:
The relationship between different ISO series metadata files and the other GOES-R Level 1b products and data files varies as a function of the type of product or data. The relationship between Level 1b product and data files is as follows:

- Each Level 1b product is associated with a unique ISO series metadata file.
- All of the types of GRB information data files are associated with a unique ISO series metadata file.
- ABI sample outlier data file is associated with a unique ISO series metadata file.
- All of the types of instrument calibration data files are associated with a shared, but unique ISO series metadata file.
- All of the types of Level 1b semi-static source data are associated with a shared, but unique ISO series metadata file.
- All of the types of Level 1b algorithm package files are associated with a shared, but unique ISO series metadata file.

Different ISO series metadata files have unique DSNs. Refer to Table 6.2, Level 1b ISO Series Metadata DSNs.

Table 6.2 Level 1b ISO Series Metadata DSNs

<table>
<thead>
<tr>
<th>Type of Level 1b Product or Data</th>
<th>ISO Series Metadata DSN</th>
<th>Specific Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1b Product</td>
<td>OR_ABI-L1b-Rad-ISO-SERIES</td>
<td>Radiances</td>
</tr>
<tr>
<td></td>
<td>OR_SUVI-L1b-SUVI-ISO-SERIES</td>
<td>Solar Imagery: X-Ray</td>
</tr>
<tr>
<td></td>
<td>OR_EXIS-L1b-SFXR-ISO-SERIES</td>
<td>Solar Flux: X-Ray</td>
</tr>
<tr>
<td></td>
<td>OR_EXIS-L1b-SFEU-ISO-SERIES</td>
<td>Solar Flux: EUV</td>
</tr>
<tr>
<td></td>
<td>OR_SEIS-L1b-EHIS-ISO-SERIES</td>
<td>Energetic Heavy Ions</td>
</tr>
<tr>
<td></td>
<td>OR_SEIS-L1b-MPSL-ISO-SERIES</td>
<td>Magnetospheric Electrons and Protons: Low Energy</td>
</tr>
<tr>
<td></td>
<td>OR_SEIS-L1b-MPSH-ISO-SERIES</td>
<td>Magnetospheric Electrons and Protons: Medium and High Energy</td>
</tr>
<tr>
<td></td>
<td>OR_SEIS-L1b-SGPs-ISO-SERIES</td>
<td>Solar and Galactic Protons</td>
</tr>
<tr>
<td></td>
<td>OR_MAG-L1b-GEOF-ISO-SERIES</td>
<td>Geomagnetic Field</td>
</tr>
<tr>
<td>GRB Information</td>
<td>OR_GRB-INFO-ISO-SERIES</td>
<td></td>
</tr>
<tr>
<td>ABI Sample Outlier Data</td>
<td>OR_SOF-ISO-SERIES</td>
<td></td>
</tr>
<tr>
<td>Instrument Calibration Data</td>
<td>OR_CAL-ISO-SERIES</td>
<td></td>
</tr>
<tr>
<td>Level 1b Semi-Static Source Data</td>
<td>OR_PARM-L1b-ISO-SERIES</td>
<td></td>
</tr>
<tr>
<td>Level 1b Algorithm Packages</td>
<td>OR_ALG-L1b-ISO-SERIES</td>
<td></td>
</tr>
</tbody>
</table>

The file extension for ISO series metadata files is “.xml”.

The filename for the instrument calibration data ISO series metadata file created at 1:00 PM UTC on January 4, 2015 is:

“OR_CAL-ISO-SERIES_c20140041300000.xml”
6.3 Level 2+ Products and Data

Level 2+ ISO series metadata filenames are assembled using filename string fields as follows:

```plaintext
<DSN>_Version.<File Extension>
```

The relationship between different ISO series metadata files and the other GOES-R Level 1b products and data files varies as a function of the type of product or data. The relationship between Level 1b product and data files is as follows:

- Each Level 2+ product is associated with a unique ISO series metadata file.
- All of the types of Level 2+ semi-static source data are associated with a shared, but unique ISO series metadata file.
- All of the types of Level 2+ algorithm package files are associated with a shared, but unique ISO series metadata file.

Different ISO series metadata files have unique DSNs. Refer to Table 6.3, Level 2+ ISO Series Metadata DSNs.

Table 6.3 Level 2+ ISO Series Metadata DSNs

<table>
<thead>
<tr>
<th>Type of Level 2+ Product or Data</th>
<th>ISO Series Metadata DSN</th>
<th>Specific Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2+ Product</td>
<td>OR_ABI-L2-ACHA-ISO-SERIES</td>
<td>Cloud Top Height</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-ACHT-ISO-SERIES</td>
<td>Cloud Top Temperature</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-ACM-ISO-SERIES</td>
<td>Clear Sky Masks</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-ACTP-ISO-SERIES</td>
<td>Cloud Top Phase</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-ADP-ISO-SERIES</td>
<td>Aerosol Detection</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-AOD-ISO-SERIES</td>
<td>Aerosol Optical Depth</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-CMIP-ISO-SERIES</td>
<td>Cloud & Moisture Imagery</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-COD-ISO-SERIES</td>
<td>Cloud Optical Depth</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-CPS-ISO-SERIES</td>
<td>Cloud Particle Size Distribution</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-CTP-ISO-SERIES</td>
<td>Cloud Top Pressure</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-DMW-ISO-SERIES</td>
<td>Derived Motion Winds</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-DSI-ISO-SERIES</td>
<td>Derived Stability Indices</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-DSR-ISO-SERIES</td>
<td>Downward Shortwave Radiation: Surface</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-FDC-ISO-SERIES</td>
<td>Fire / Hot Spot Characterization</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-FSC-ISO-SERIES</td>
<td>Snow Cover</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-HIE-ISO-SERIES</td>
<td>Hurricane Intensity</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-LST-ISO-SERIES</td>
<td>Land Surface (Skin) Temperature</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-LVMP-ISO-SERIES</td>
<td>Legacy Vertical Moisture Profile</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-LVTP-ISO-SERIES</td>
<td>Legacy Vertical Temperature Profile</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-RRQPE-ISO-SERIES</td>
<td>Rainfall Rate/QPE</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-RSR-ISO-SERIES</td>
<td>Reflected Shortwave Radiation: TOA</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-SST-ISO-SERIES</td>
<td>Sea Surface (Skin) Temperature</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-TPW-ISO-SERIES</td>
<td>Total Precipitable Water</td>
</tr>
<tr>
<td></td>
<td>OR_ABI-L2-VAA-ISO-SERIES</td>
<td>Volcanic Ash: Detection & Height</td>
</tr>
<tr>
<td>Level 2+ Semi-Static Source Data</td>
<td>OR_PARM-L2-ISO-SERIES</td>
<td>Lightning Detection</td>
</tr>
</tbody>
</table>
The file extension for ISO series metadata files is “.xml”, indicating XML files.
The filename for the Total Precipitable Water ISO series metadata file created at 5:05 PM UTC on January 7, 2017 is:
“OR_ABI-L2-TPW-ISO-SERIES_c20170071705000.xml”