Connect With Us
GOES-R Facebook page GOES-R YouTube Page NOAA Satellites Flickr Page GOES-R Twitter
Program News   + News Archive
August 26, 2015: A new ABI Band Quick Information Guide is now available. ABI Band 9 is one of three mid-tropospheric water vapor bands on the ABI. This band will be used for mid and upper-level tropospheric water vapor tracking, jet stream identification, hurricane track forecasting, mid-latitude storm forecasting, severe weather analysis, and mid-level moisture estimation (for legacy vertical moisture profiles).
August 24, 2015: The American Meteorological Society (AMS) Short Course on the Geostationary Operational Environmental Satellite (GOES)-R and Joint Polar Satellite System (JPSS) will be held on January 10, 2016, associated with the 96th AMS Annual Meeting in New Orleans, Louisiana. The course will introduce users to the new capabilities made possible by NOAA’s next generation weather satellite constellation including the GOES-R series Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), and the added information provided by the Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) for improved environmental intelligence, forecasts, and warnings. Short course participants will have the opportunity for hands-on experience with observed, proxy and simulated data that showcase the many applications to improve forecasts and warnings of high-impact weather and environmental phenomena. GOES-R/JPSS Short Course Info  GOES-R/JPSS Short Course Agenda
August 21, 2015: A new ABI Band Quick Information Guide is now available. ABI Band 8 will be used for upper-level tropospheric water vapor tracking, jet stream identification, hurricane track forecasting, mid-latitude storm forecasting, severe weather analysis, upper mid-level moisture estimation (for legacy vertical moisture profiles) and turbulence detection. This band can be used to estimate atmospheric motion vectors. In addition, the radiances from this and other bands will be used directly in Numerical Weather Prediction models.
August 18, 2015: A new ABI Band Quick Information Guide is now available. ABI Band 7 is useful in many applications, including fog/low cloud identification at night, fire/hot-spot identification, volcanic eruption and ash detection, and daytime snow and ice detection. Low-level atmospheric vector winds can also be estimated using this band. The shortwave infrared window is also useful for studying urban heat islands and clouds.
July 27, 2015: The GOES-R Proving Ground Science Seminar on July 24, 2015 featured Chad Gravelle (GOES-R Satellite Liaison, NWS Operations Proving Ground). Gravelle presented results from the Operations Proving Ground one-minute satellite imagery evaluation. Between February and April of 2015, the National Weather Service (NWS) Operations Proving Ground (OPG) hosted and facilitated an evaluation of the usefulness of one-minute satellite imagery for NWS operations in the GOES-R era. The overarching goal of the evaluation was to provide quantitative and qualitative guidance to NWS management, including the regional NWS Scientific Services Division Chiefs, on how satellite imagery with a refresh rate of one-minute impacts NWS forecaster decision-making. In total, seventeen NWS forecasters completed eight simulations that were developed using imagery from the 2013 and 2014 GOES-14 Super Rapid Scan Operations for GOES-R. Gravelle’s presentation provided a brief overview of the evaluation and a detailed analysis of the forecaster feedback with recommendations for incorporating one-minute satellite imagery in the GOES-R era. Abstract | Presentation
July 24, 2015: The GOES-R Quarterly Newsletter for the time period April–June 2015 is now available. We’ve entered a critical phase for the GOES-R Series Program as the assembled and integrated GOES-R satellite begins environmental testing. Ground segment components are also being tested and user readiness continues to be a priority, with opportunities to connect through conferences, Proving Ground activities, and the first GOES-R short course for broadcast meteorologists. We also continue to make significant progress in the development of the GOES-S, T and U satellites.
July 22, 2015: The GOES-S Energetic Heavy Ion Sensor (EHIS) recently received a clean bill of health from Massachusetts General Hospital in Boston. The EHIS, part of the Space Environment In-Situ Suite instrument, was successfully tested using the hospital’s proton accelerator and deemed to be in good working order. EHIS will be responsible for measuring the heavy charged particles trapped in Earth’s magnetosphere and those that come from the sun or from cosmic rays. This information will be used to help scientists protect astronauts and high altitude aircraft from high levels of harmful ionizing radiation. Several GOES-R and GOES-S sensors have been tested using Mass Gen’s proton accelerator, which is typically used for cancer treatment.  Feature Story
July 06, 2015: Environmental testing of the GOES-R satellite is underway! The door to the thermal vacuum chamber was closed and sealed on July 1 and the satellite is now undergoing thermal vaccuum testing. The satellite will spend the next two months in the 29’ by 65’ chamber at Lockheed Martin undergoing rigorous testing designed to simulate the harsh environment of space. During this time, GOES-R will be exposed to the extreme hot and cold temperatures it will experience in space as it orbits the Earth with temperatures ranging from -15 degrees Celsius to 50 degrees Celsius. Photos
July 02, 2015: On June 24, 2015, Tim Schmit, meteorologist with NOAA Satellite and Information Service Advanced Satellite Products Branch, delivered a lecture on GOES-R at the University of Wisconsin, Madison, as part of the university’s Wednesday Nite at the Lab lecture series. Schmit’s talk “Advanced Geostationary Weather Satellites: Why You Should Care,” covered the past, present and future of U.S. geostationary imagers. The lecture was streamed live and was followed by an extensive question and answer session. Lecture
July 02, 2015: The GOES-R Brown Bag Series Seminar on July 1, 2015 Robert Kuligowski (NESDIS/STAR/SMCD/EMB). Kuligowski provided an update on recent improvements to the GOES-R rainfall rate algorithm. The GOES-R rainfall rate algorithm will provide instantaneous estimates of rain rate every 15 min with 5-min latency over the entire Advanced Baseline Imager (ABI) full disk at the full 2-km (at nadir) IR pixel resolution. This algorithm takes advantage of the enhanced spectral capabilities provided by the ABI and updates its calibration in real time against microwave-derived rainfall rates to obtain an optimal calibration for different locations and precipitation regimes. Presentation
July 01, 2015: The GOES-R/JPSS joint Proving Ground Science Seminar on June 29, 2015 featured Jordan Gerth (Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison). Gerth spoke about preparing meteorologists at field offices in the National Weather Service Pacific Region (NWSPR) for the new data and capabilities that will be available with NOAA’s next generation of geostationary (GOES-R series) and polar-orbiting (JPSS) environmental satellites. His presentation provided an update of the training activities that are planned for NWSPR, how new and experimental products are integrated into operations, and other thoughts on satellite proving ground activities from the perspective of a part-liaison, part-developer, and part-scientist that serves NWSPR. Abstract  Presentation
June 29, 2015: The GOES-R Proving Ground Spring Experiment at NOAA’s Hazardous Weather Testbed (HWT) in Norman, Oklahoma, wrapped up on June 12. Each spring, at the height of severe-weather season, the GOES-R Proving Ground engages forecasters in demonstrations and evaluations of GOES-R products and capabilities that have the potential to improve short-range hazardous weather forecasting and warnings. The GOES-R Proving Ground spring experiment took place May 4–June 12, 2015, with 30 National Weather Service forecasters and broadcast meteorologists participating. In conjunction with the HWT spring experiment, NOAA’s GOES-14 spare satellite was brought out of storage in its central orbit and operated in Super Rapid Scan Operations mode. This demonstration provided special one-minute imagery of severe storms that simulates the capabilities that will be available with the GOES-R series satellites. Feature Story  Video  HWT Blog  SRSOR Imagery
June 22, 2015: The 2015 NOAA Satellite Proving Ground/User Readiness Meeting was held June 15–19 at the National Weather Service (NWS) Training Center in Kansas City, Missouri. This meeting is the NWS operational/training complement to the annual NOAA Satellite Science Week Meeting in February 2015. The purpose of the Satellite Proving Ground/User Readiness Meeting is to assess the status of GOES-R and JPSS user-readiness for NWS and other NOAA staff while identifying the remaining gaps in preparation for the 2016-2017 launch targets. Presentations
June 17, 2015: A new ABI Band Quick Information Guide is now available. In conjunction with other bands, ABI Band 6 (cloud, particle size, near-infrared) will enable cloud particle size estimation. Cloud particle growth is an indication of cloud development and intensity of that development. Other applications of the 2.2 μm band include: use in a multispectralapproach for aerosol particle size estimation (by characterizing the aerosol-free background over land), cloud screening, hot-spot detection, and snow detection.
June 16, 2015: The solar array panel on the GOES-R spacecraft was successfully deployed in a test conducted at Lockheed Martin Corporation in Littleton, Colorado, in May. Engineers unfurled the five panels on rails that help simulate deployment in the zero-gravity environment of space. Once the satellite is launched, the solar array panel will generate more than 4,000 watts of electricity from sunlight to power GOES-R. Feature Story  Video
June 12, 2015: The GOES-R Series Program conducted a GOES-R Preview for Broadcasters “short course” on GOES-R capabilities, products and applications on June 9, 2015, at a day-long session preceding the 43rd American Meteorological Society (AMS) Conference on Broadcast Meteorology in Raleigh, North Carolina. The short course provided information on the improved GOES-R series instruments, including the Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). It also highlighted the suite of new GOES-R products and their applications for improved environmental observations, forecasts and warnings. These new measurements will offer the broadcaster unprecedented information to showcase many environmental phenomena. Short-course participants had the opportunity for hands-on experience with proxy and simulated GOES-R products and capabilities. The goal of the course was to make broadcaster meteorologists more aware of GOES-R capabilities, how it can improve their services to the viewing public, and what equipment upgrades are needed to handle the new data and products. Presentations  Feature Story
June 1, 2015: The GOES-R Proving Ground Science Seminar on May 29, 2015 featured "Using GOES-R Probabilities of Instrument Flight Rules (IFR) Visibility and Ceiling for Decision Support at the Federal Aviation Administration (FAA) - Air Traffic Control System Command Center (ATCSCC)" by Michael Eckert (NWS/AWC/AOB). Low ceilings and visibility are two of many weather related aviation hazards that are more common during the Fall, Winter and Spring months. Surface observations (METARS) and Satellite Brightness Temperature Difference (BTD) (11µm - 3µm wavelengths) have been the main tools used in the past to anticipate the onset/dissipation of IFR conditions. The GOES-R Algorithm Working Group (AWG) developed a multi-tool approach using METARs, Numerical Weather Prediction (NWP), Sea Surface Temperature (SST) and other datasets to determine the probability of IFR conditions. Operational use of the GOES-R Probabilities of IFR conditions has led to several well-forecast high impact events, which has saved the aviation industry and flying public time and money. Presentation.
May 29, 2015: The 2015 GOES-R/JPSS OCONUS Satellite Proving Ground Technical Interchange Meeting was held May 12–15, 2015 at the Alaska Aviation Forecast Facility in Anchorage. Presentations focused on capability and product demonstrations with NWS forecasters in the Pacific and Alaska Region where meteorological satellite data is of particular utmost importance. The GOES-R algorithm demonstration plans with the Himawari imager, product distribution to direct broadcast users, and current Proving Ground demonstrations were major topics of discussion. Agenda  Presentations
May 29, 2015:  A new ABI Band Quick Information Guide is now available. In conjunction with other bands, ABI Band 5 (“snow/ice” near-infrared) will be used for daytime cloud, snow and ice discrimination, total cloud cover estimation, cloud-top phase, and smoke detection from fires with low burn rates. The 1.6 μm band takes advantage of the relatively large difference between the refraction components of water and ice. This makes daytime water/ice cloud delineation possible, which will be very useful for aircraft routing.
May 27, 2015: A new ABI Band Quick Information Guide is now available. ABI Band 4 (“cirrus” near-infrared) will detect very thin cirrus clouds during the day. This band is new for the GOES-R series and is not available on current GOES.
May 27, 2015: The GOES-R Brown Bag Series Seminar on May 20, 2015 featured Eric Guillot (IAI/NWS Office of Observations). Guillot explained the Total Operational Weather Readiness – Satellites (TOWR-S) project, which is a joint GOES-R/JPSS/National Weather Service (NWS) project designed to assess the usability of both GOES-R and JPSS satellite data with respect to the NWS mission. Specifically, TOWR-S focuses on GOES-R, SNPP/JPSS, and Himawari satellite data integration within the Advanced Weather Interactive Processing System (AWIPS-II) in order to optimize its use for operations. Presentation
May 21, 2015: The GOES-R satellite has completed final integration and is now ready to enter the environmental testing phase. Environmental testing is intended to simulate the harsh conditions of launch and the space environment once the satellite is in orbit. The GOES-R satellite and its instruments will undergo a variety of rigorous tests which include vibration, acoustics and subjecting the satellite to extreme thermal temperatures in a vacuum chamber. The environmental testing will take place at Lockheed Martin Corporation’s Littleton, Colorado, facility where the spacecraft is being built. Feature Story.
May 11, 2015: The 2015 NOAA Satellite Conference was held April 27–May 1 at the Greenbelt, Maryland, Marriott with over 600 participants from 40 countries as well as members of NOAA, NASA, the Department of Defense, Environment Canada, EUMETSAT, and the Hydrometeorological Services of countries in North, Central and South America; the Caribbean, and Asia. The conference brought together Direct Readout, GOES/POES, and GOES-R/JPSS users and providers of polar-orbiting and geostationary satellite data, products and applications, from the public, private and academic sectors. Several sessions focused on the GOES-R Series Program and included presentations on the new capabilities and products that will be available from the series, data distribution and access, and preparing the user community through education and training. Each session featured a question and answer period to allow attendees to interact with presenters. In addition to oral presentations, 170 posters were submitted for NSC 2015 that highlighted the diverse uses of satellite information throughout the world. Posters and presentations can be viewed and downloaded from the conference website. Attendees can provide feedback on theb conference via the post-conference feedback survey.
For all past news visit our  GOES-R News Archive.
Home Contact Us FOIA Privacy FAQs User Survey Site Map image: logo