GOES-17 helps forecasters monitor atmospheric rivers affecting the West Coast
Feature StoryImproved forecasts for the western U.S., Alaska and Hawaii
Operational Announcement GOES West Imagery Benefits for Western U.S.The latest GOES-R Series Quarterly Newsletter is now available for download.
Download All NewslettersThe satellite arrived at its new vantage point on November 13, 2018
Feature Story ImageryGOES-17 will soon take its place as NOAA’s GOES West operational satellite.
Feature Story Transition DetailsNOAA's latest generation of geostationary weather satellites
The Geostationary Operational Environmental Satellite (GOES) – R Series is the nation’s most advanced fleet of geostationary weather satellites. The GOES-R Series significantly improves the detection and observation of environmental phenomena that directly affect public safety, protection of property and our nation’s economic health and prosperity.
The satellites provide advanced imaging with increased spatial resolution and faster coverage for more accurate forecasts, real-time mapping of lightning activity, and improved monitoring of solar activity and space weather.
The GOES-R Series is a four-satellite program (GOES-R/S/T/U) that will extend the availability of the operational GOES satellite system through 2036.
Remote environmental sensing is only part of the GOES-R Series mission. The satellites also provide unique capabilities to relay data directly to users to meet critical needs
DCS is a satellite relay system used to collect information from Earth-based data collection platforms that transmit in-situ environmental sensor data from more than 20,000 platforms across the hemisphere.
GOES Rebroadcast provides the primary relay of full resolution, calibrated, near-real-time direct broadcast space relay of Level 1b data from each instrument and Level 2 data from the Geostationary Lightning Mapper (GLM). GRB replaces the GOES VARiable (GVAR) service
The Emergency Managers Weather Information Network (EMWIN) is a direct service that provides users with weather forecasts, warnings, graphics and other information directly from the National Weather Service (NWS) in near real-time. The HRIT service is a new high data rate (400 Kpbs) version of the previous LRIT (Low Rate Information Transmission), broadcasting GOES-R Series satellite imagery and selected products to remotely-located user terminals.
The SARSAT system detects and locates mariners, aviators and other recreational users in distress. The GOES-R Series continues the legacy function of the SARSAT system on board NOAA’s GOES satellites. This system uses a network of satellites to quickly detect and locate signals from emergency beacons onboard aircraft, vessels and from handheld personal locator beacons. The GOES-R Series SARSAT transponder operates with a lower uplink power than the current system (32 bBm), enabling GOES-R Series satellites to detect weaker beacon signals.
The GOES-R series spacecraft bus is three-axis stabilized and designed for 10 years of on-orbit operation preceded by up to five years of on-orbit storage. The spacecraft carries three classifications of instruments: nadir-pointing, solar-pointing, and in-situ. Visit the Spacecraft page of this site for more information.
Explore the GOES-R series spacecraft: Use the quick view buttons above to swap the views of the spacecraft, watch the video below and use the Spacecraft & Instruments links below.
A fly by in space of GOES-R. Note: there is no audio, therefore no closed captions.
The most recent images of Earth's western hemisphere from the GOES constellation .
Environmental satellites provide data in several different formats. The most commonly used channels on weather satellites are the visible, infrared, and water vapor.
Visible satellite images, which look like black and white photographs, are derived from the satellite’s signals. Clouds usually appear white, while land and water surfaces appear in shades of gray or black. The visible channel reflects solar radiation. Clouds, the Earth's atmosphere, and the Earth's surface all absorb and reflect incoming solar radiation. Since visible imagery is produced by reflected sunlight (radiation), it is only available during daylight.
In the infrared (IR) channel, the satellite senses energy as heat. The Earth’s surface absorbs about half of the incoming solar energy. Clouds and the atmosphere absorb a much smaller amount. The Earth’s surface, clouds, and the atmosphere then re-emit part of this absorbed solar energy as heat. The infrared channel senses this re-emitted radiation. Infrared imagery is useful for determining cloud features both at day and night.
Water vapor imagery is used to analyze the presence and movement of water vapor moisture in the upper and middle levels of the atmosphere. The wavelength spectrum used to detect water vapor is in the 6.7 to 7.3 micrometer wavelength range. The darker regions in water vapor imagery are areas where very little water vapor exists in the middle and upper troposphere, and the lighter regions are very moist. Water vapor imagery is a very valuable tool for weather analysis and prediction because water vapor imagery shows moisture in the atmosphere, not just cloud patterns. This allows meteorologists to observe large-scale circulation patterns even when clouds are not present.
The National Oceanic and Atmospheric Administration (NOAA) maintains two primary constellations of environmental satellites: geostationary and polar-orbiting. These satellites are part of NOAA's integrated observing system, which includes satellites, radar, surface automated weather stations, weather balloons, sounders, buoys, instrumented aircraft and other sensors, along with the data management infrastructure needed for this system.
Geostationary satellites orbit 35,800 km (22,300 miles) above Earth's equator at speeds equal to Earth's rotation, which means they maintain their positions and provide continuous coverage. Information from geostationary satellites is used for short-term (1 day) weather forecasting and severe storm warning and tracking.
Polar-orbiting satellites make regular orbits around the Earth’s poles from about 833 km (517 miles) above the Earth’s surface. The Earth constantly rotates counterclockwise underneath the path of the satellite, making for a different view with each orbit. Information from polar-orbiting satellites is used for mid-range (3-7 day) forecasts and advanced warnings of severe weather.
GOES satellites continually view the continental United States, Pacific and Atlantic Oceans, Central and South America, and Southern Canada. To fully cover Alaska, Hawaii, the entire continental United States and the Pacific and Atlantic Oceans (for tropical storms), NOAA operates two GOES satellites simultaneously: GOES East and GOES West. GOES East is located at 75.2° W and provides most of the U.S. weather information. GOES West is located at 137.2°W over the Pacific Ocean. In addition to two operational satellites, NOAA also maintains an on-orbit spare.
Since 1975, GOES have provided continuous imagery and data on atmospheric conditions and solar activity (space weather). They have even aided in search and rescue of people in distress. GOES data products have led to more accurate and timely weather forecasts and better understanding of long-term climate conditions. NASA builds and launches the satellites and NOAA operates them.
GOES-R launched on November 19, 2016, and was followed by GOES-S on March 1, 2018. GOES-T was scheduled to launch in 2020 but will be delayed due to redesign of the Advanced Baseline Imager radiator. GOES-U is scheduled to launch in 2024.
GOES-S, the second satellite in the GOES-R Series, launched on March 1, 2018, at 5:02 p.m. EST at the opening of the two-hour launch window. GOES-S launched from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida, aboard an Atlas V 541 rocket. The satellite was renamed GOES-17 when it reached geostationary orbit on March 12, 2018.
GOES-17 joined its sister satellite, GOES-16, in orbit. The first satellite in the series, GOES-R, launched on November 19, 2016, and became GOES-16 when it reached geostationary orbit. GOES-16 replaced GOES-13 as NOAA’s operational GOES East satellite at 75.2 degrees west longitude on December 18, 2017. GOES-17 became the operational GOES West satellite at 137.2 degrees west longitude on February 12, 2019, replacing GOES-15.
GOES satellites are placed into a geosynchronous orbit that keeps them over a specific location on the earth. By maintaining a position hovering over a fixed point on Earth's surface, GOES are able to constantly monitor atmospheric conditions in a particular portion of the Earth's atmosphere. Note that non-geosynchronous orbits (for example polar orbits) move over an ever-rotating earth underneath them, therefore seeing a constantly changing view, which has advantages for other types of missions.
GOES-16 became operational as NOAA’s GOES East on December 18, 2017, replacing GOES-13. From its operational location of 75.2 degrees west longitude, GOES-16 is keeping watch over most of North America, including the continental United States and Mexico, as well as Central and South America, the Caribbean, and the Atlantic Ocean to the west coast of Africa.
GOES-13 now resides in storage. GOES-14 will continue to be the on-orbit spare GOES satellite in the event of an anomaly or failure of GOES East or GOES West.
Learn more about GOES-16’s transition to operations.
View GOES-16 operational imagery via the GOES East Image Viewer.
GOES-17 replaced GOES-15 as NOAA’s operational GOES West satellite on February 12, 2019. From its operational location of 137.2 degrees west longitude, GOES West is in position to watch over the western continental United States, Alaska, Hawaii, and the Pacific Ocean all the way to New Zealand.
Due to a performance issue with the cooling system encountered during commissioning of the GOES-17 Advanced Baseline Imager (ABI) instrument, approximately 3% of ABI data is estimated to be lost due to the anomaly.
GOES-15 will continue to operate alongside GOES-17 through early July 2019 to allow for assessment of the performance of GOES-17 as the GOES West operational satellite. GOES-15 drifted from its operational location at 135 degrees west longitude to 128 west to eliminate radio frequency interference with GOES-17 at 137.2 west.
Learn more about GOES-17’s transition to operations.
Learn more about cooling system issue and GOES-17 ABI performance.
View GOES-17 operational imagery via the GOES West Image Viewer.
Atmospheric rivers are long, narrow conveyor belts of moisture that move through the atmosphere. Strong atmospheric rivers can deliver enormous amounts of rain and high-elevation snow in California, Pacific Northwest, and Alaska, especially during the winter months. The GOES-R Series Advanced Baseline Imager provides improved detection and monitoring of atmospheric river events. Understanding and anticipating the role of atmospheric rivers is important for water and emergency management on the West Coast, particularly in California. GOES-17, recently designated NOAA’s GOES West operational satellite, is positioned to keep an eye on the western U.S., Alaska and Pacific Ocean, and provide advanced monitoring of atmospheric rivers among other weather phenomena and hazards.
In 2018, the NOAA Search and Rescue Satellite Aided Tracking (SARSAT) system helped save 340 lives with the aid of NOAA satellites like GOES-16. In addition to carrying instruments for monitoring our atmosphere, land and oceans for severe weather and other hazards, GOES-16 also carries a SARSAT transponder to help locate people in distress. This transponder provides the capability to immediately detect distress signals from emergency beacons and relay them to ground stations. In turn, this signal is routed to a SARSAT mission control center and then sent to a rescue coordination center, which dispatches a search and rescue team to the location of the distress.
GOES-17 is now operational as NOAA’s GOES West. In its new role, GOES-17 is providing faster, more accurate, and more detailed observations for detecting and monitoring Pacific storm systems, fog, wildfires, and other weather phenomena that affect the western United States, Alaska, and Hawaii. Located at 137.2 degrees west longitude, GOES-17 replaces GOES-15 as NOAA’s operational GOES West. GOES-17 joins GOES-16, in operations as NOAA’s GOES East, in delivering high-resolution visible and infrared imagery and lightning observations of more than half the globe – from the west coast of Africa to New Zealand and from near the Arctic Circle to the Antarctic Circle. View GOES-17 operational imagery.
GOES East captured a partial solar eclipse on February 5, 2019. In this animation from the satellite’s Solar Ultraviolet Imager (SUVI) instrument, you can see the moon passing across the sun. A partial eclipse occurs when the sun and moon are not exactly in line with the Earth and the moon only partially obscures the sun.
On February 1, 2019, at 1:17 p.m. EST, the GOES-16 Geostationary Lightning Mapper (GLM) detected a bright meteor over northwestern Cuba. The meteorite landed near Viñales, Pinar del Río in western Cuba. While designed for mapping lightning flashes, GLM can observe large meteors anywhere throughout its coverage area. The instrument takes 500 images of Earth every second, allowing it to measure the shape of a meteor “light curve,” or the change in brightness of a meteor with time, with millisecond precision.
The GOES-16 Advanced Baseline Imager also detected the airborne debris cloud as it drifted northeastward then eastward for about an hour after the impact. The signatures in the split cloud top phase and split window imagery were due to the presence of mineral dust particles within the debris cloud — the emissivity properties of dust affects the sensed brightness temperatures differently for various infrared spectral bands. The cirrus spectral band is useful for detecting the scattering of light by airborne particles such as ice crystals, volcanic ash, smoke or dust. The debris cloud was also casting a subtle shadow onto the surface, as seen in the visible imagery.
The GOES-R Series Program quarterly newsletter for the time period October – December 2018 is now available. GOES-17 completed its Handover Readiness Review and the program handed the satellite over to NOAA’s Office of Satellite and Product Operations. GOES-17 is now in its operational location at 137.2 west and is providing stunning imagery of the U.S. West Coast, Alaska, Hawaii, and even New Zealand. The satellite is ready for operations as NOAA’s GOES West.
This conference merges three satellite conferences into one major event. NOAA, the American Meteorological Society (AMS) Satellite Meteorology, Oceanography, and Climatology (SatMetOC), and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) will hold a joint conference September 29 – October 4, 2019, in Boston. Abstract submissions are due on March 1, 2019.
April 8-11, 2019
Colorado Springs, Colorado
Conference InfoJune 12-14, 2019
San Diego, California
Conference InfoJuly 30 – August 1, 2019
Kansas City, Missouri
September 7-12, 2019
Huntsville, Alabama
Conference InfoSeptember 28 – October 4, 2019
Boston, Massachusetts
Conference Info