[an error occurred while processing this directive]

GOES-R Series News | 2019


  • June 11, 2019: GOES-R Lightning Detection Fact Sheet

    GOES-16 GLM and ABI composite of lightning illuminating a mesoscale convective system over Uruguay.
    GOES-16 GLM and ABI composite of lightning illuminating a mesoscale convective system over Uruguay.

    Rapid increases in total lightning (in-cloud and cloud-to-ground) activity often precede severe and tornadic thunderstorms. The GOES-R Series Geostationary Lightning Mapper (GLM) is the first operational lightning mapper flown in geostationary orbit. GLM data reveal convective storm development and evolution and provide insights beyond the presence of a lightning strike, including the spatial extent and distance lightning flashes travel. Trends in total lightning available from GLM provide critical information to forecasters, allowing them to identify initial thunderstorm development and focus on potentially severe storms before they produce damaging winds, hail or tornadoes. GLM can also aid with aviation route planning and early recognition of conditions conducive to lightning-ignited wildfires. The instrument has even been found useful in identifying meteors entering the Earth’s atmosphere.

  • June 7, 2019: GOES-16/17 Virtual Science Fair Winners Announced

    GOES-16/17 Virtual Science Fair first place high school team from Santa Fe High School, coach Derek Buschman (left) and student Faris Wald (right).
    GOES-16/17 Virtual Science Fair first place high school team from Santa Fe High School, coach Derek Buschman (left) and student Faris Wald (right).

    The winners of the 2019 GOES-16/17 Virtual Science Fair were announced on June 7. Two middle school teams tied for first place: Auburn, Massachusetts, and Medford New Jersey. The high school first place team is from Santa Fe, New Mexico. Students from grades 6-14 were invited to participate in the virtual science fair. Each team used data from GOES-16 and GOES-17 to investigate weather and natural hazards. View all the science project submissions.

  • June 5, 2019: GOES-R Fire Detection and Characterization Fact Sheet

    Flames tower above the treeline next to Highway 63 south of Fort McMurray, Alberta, Canada, on May 7, 2016.
    Flames tower above the treeline next to Highway 63 south of Fort McMurray, Alberta, Canada, on May 7, 2016.

    Fires, whether naturally occurring or manmade, have substantial impacts upon society. Wildfires can destroy vast tracts of land, releasing tons of aerosols and gases into the atmosphere, while destroying homes, wildlife habitats and valuable resources. Satellites allow for detecting and monitoring a range of fires, providing information about the location, duration, size, temperature, and power output of those fires that would otherwise be unavailable. With the GOES-R Series, this information can be used to track fires in real time, provide input data for air quality modeling, and help separate the impact of the fires from other sources of pollution. A new fact sheet highlights the new tools available for detecting and monitoring wildfires, observing and monitoring smoke from those fires, monitoring burn scars, and predicting flash flood events from rain events after a fire.

  • June 5, 2019: GOES-R Volcanic Ash Detection Fact Sheet

    NOAA’s Mauna Loa Observatory.
    An ash plume rises from the Kilauea volcano in Hawaii on May 15, 2018.

    Volcanic ash is a significant health, aviation, infrastructure, and economic hazard. Volcanic emissions generate Volcanic emissions generate complex clouds that can affect local, regional, or, in the case of very large eruptions, global weather and climate. Given the remote location of most volcanoes and the rapid formation and expansion of volcanic clouds, geostationary satellites are the primary tool for identifying, tracking and characterizing volcanic clouds. GOES East and GOES West observe a significant fraction of the most volcanically active region on Earth, known as the “Pacific Ring of Fire.” The GOES-R Series provides a complete set of advanced volcanic cloud detection and monitoring products and tools. A new fact sheet highlights how forecasters use GOES-R volcanic ash applications to identify areas where ash is present and potentially hazardous and issue more accurate aviation, air quality, ground safety, and public health warnings.

  • June 4, 2019: Carbon Dioxide Levels in Atmosphere Hit Record High in May

    NOAA’s Mauna Loa Observatory.
    NOAA’s Mauna Loa Observatory.

    Atmospheric carbon dioxide continued its rapid rise in 2019, with the average for May peaking at 414.7 parts per million (ppm) at NOAA’s Mauna Loa Atmospheric Baseline Observatory. The measurement is the highest seasonal peak recorded in 61 years of observations on top of Hawaii’s largest volcano and the seventh consecutive year of steep global increases in concentrations of carbon dioxide (CO2), according to data published on June 4, 2019, by NOAA and Scripps Institution of Oceanography. The 2019 peak value was 3.5 ppm higher than the 411.2 ppm peak in May 2018 and marks the second-highest annual jump on record.

  • June 3, 2019: Hurricane Research Gains Ground

    Aerial photo of West Houston after Hurricane Harvey. Courtesy of NOAA Ocean Service.
    Aerial photo of West Houston after Hurricane Harvey. Courtesy of NOAA Ocean Service.

    With significant coastal populations and property at stake, two new studies by NOAA’s National Centers for Environmental Information (NCEI) and its research partners focus on the behavior of tropical cyclones. Because hurricanes can cause fatalities and billions of dollars in damage, the new research could contribute to greater preparedness, improved forecasts, and resiliency efforts. These studies delve into the speed, direction, and intensity of tropical cyclones.

  • June 3, 2019: GOES-R Snow and Ice Fact Sheet

    Ice along the southern Lake Michigan shoreline (denoted by arrows) contrasts with the warmer, unfrozen lake water in this GOES-16 infrared imagery. Using a pair of images three hours apart, the ice motion code detected strong eastern/northeastern motion along the lakeshore.
    Ice along the southern Lake Michigan shoreline (denoted by arrows) contrasts with the warmer, unfrozen lake water in this GOES-16 infrared imagery. Using a pair of images three hours apart, the ice motion code detected strong eastern/northeastern motion along the lakeshore.

    The cryosphere includes snow, sea ice, lake and river ice, icebergs, glaciers, ice caps, ice sheets, ice shelves, permafrost, seasonally frozen ground, and solid precipitation. Changes in the cryosphere have major impacts on water supply, agriculture, transportation, freshwater ecosystems, hydropower production, health, and recreation. Notable cryosphere-related hazards include floods, droughts, avalanches, and sea-level rise. Satellite instruments are essential for delivering large-scale observations of the cryosphere and are a key to extending ground-based measurements. A new fact sheet highlights snow and ice applications from the GOES-R Series. Cryospheric observations and information from the GOES-R Series provide a new opportunity to continuously observe snow and ice from geostationary orbit, improving weather forecasting and hazard warnings and helping to reduce the risk of loss of life and property from natural and human-induced disasters. These observations provide a better understanding of environmental factors that affect human health and well-being, are critical to marine navigation at high latitudes, and improve the management of water resources, and terrestrial, coastal and marine ecosystems.


  • May 23, 2019: New Tools for Monitoring Hurricanes in a Changing Climate

    GOES-16 GeoColor image of Hurricane Harvey on August 26, 2017, after it made landfall on the Texas coast.
    GOES-16 GeoColor image of Hurricane Harvey on August 26, 2017, after it made landfall on the Texas coast.

    Hurricanes are one of the most menacing natural hazards, especially for island and coastal populations. A warming climate is expected to impact sea level rise, storm surge, tropical cyclone rainfall rates, and tropical cyclone intensity. We are also seeing a pattern of slower storms, remaining stationary over a location for longer periods of time and increasing flooding impacts. This isn’t great news for the millions of people in the paths of hurricanes each year. Fortunately, we have two new advanced geostationary satellites, NOAA’s GOES-16 and GOES-17 that continuously view the entire Atlantic and Eastern/Central Pacific hurricane basins. The latest generation of GOES carry sophisticated instruments that provide new and dramatically improved capabilities for forecasting, tracking and monitoring hurricanes as well as the environmental conditions that cause them to form.

  • May 23, 2019: NOAA Predicts Near-Normal 2019 Atlantic Hurricane Season

    2019 Atlantic Hurricane Season outlook

    The 2019 Atlantic hurricane season begins on June 1. The National Oceanic and Atmospheric Administration’s (NOAA‘s) Climate Prediction Center is forecasting a near-normal Atlantic hurricane season. For 2019, NOAA predicts a likely range of 9 to 15 named storms (winds of 39 mph or higher), of which 4 to 8 could become hurricanes (winds of 74 mph or higher), including 2 to 4 major hurricanes (category 3, 4 or 5; with winds of 111 mph or higher). This outlook reflects competing climate factors. The ongoing El Nino is expected to persist and suppress the intensity of the hurricane season. Countering El Nino is the expected combination of warmer-than-average sea-surface temperatures in the tropical Atlantic Ocean and Caribbean Sea, and an enhanced west African monsoon, both of which favor increased hurricane activity. In addition to the Atlantic hurricane season outlook, NOAA also issued the seasonal hurricane outlook for the central Pacific basin. The Central Pacific Hurricane Center announced a 70% chance of above-normal tropical cyclone activity during the central Pacific hurricane season this year and predicted 5 to 8 tropical cyclones for the central Pacific basin.

  • May 14, 2019: GOES-R Cloud and Moisture Imagery Fact Sheet

    16 images of the contiguous United States showing each of the ABI spectral bands. Visible imagery is shown in black and white and infrared imagery is colorized according to the features seen in each panel.
    The 16 spectral bands of the ABI are shown as a 16-panel panel image of the contiguous United States on December 22, 2017 from GOES-16. The first two bands sense in the visible, the following four in the near infrared, and the final ten in the infrared.

    Cloud and moisture imagery is the satellite imagery that forecasters and the public are accustomed to viewing in weather forecast offices, on the web and in the news. Cloud and moisture imagery includes digital maps of observed land, water and clouds. A new GOES-R cloud and moisture imagery fact sheet explains what types of imagery the Advanced Baseline Imager (ABI) provides. The GOES-R Series ABI measures energy at different wavelengths, which is either reflected (visible and near infrared) or emitted (infrared) from the Earth’s surface. The ABI increases spatial resolution (to better monitor small-scale features), provides faster coverage (to improve temporal sampling and to scan additional regions) and adds spectral bands (to enable new and improved products for a wide range of phenomena). ABI provides advanced measurements of atmospheric and surface conditions such as sea and land surface temperatures, vegetation, clouds, aerosols, hurricanes, winds, water vapor, rainfall, snow and ice cover, fire locations, smoke plumes, volcanic ash and gas, atmospheric temperature and moisture, and ozone.

  • May 14, 2019: GOES-R Aerosols/Air Quality Fact Sheet

    Large plume of smoke seen from an airplane, with airplane wing in view.
    Smoke plume from fire near Yosemite National Park, seen from ~25,000 feet on August 5, 2018. The smoke caused such poor air quality that emergency managers were forced to evacuate and close areas of the park.

    Aerosols are solid and semi-solid particles suspended in the air that have harmful impacts on human health and the environment. GOES-R Series satellites provide a host of aerosol imagery and quantitative retrieval products for air quality monitoring and forecasting applications. A new GOES-R aerosols/air quality applications fact sheet explains how GOES-R satellites enable forecasters to better monitor areas of smoke and dust, which can be critical factors in visibility, aviation and air quality forecasts. In addition to short-term prediction, they also enable better monitoring of the long-term trends in aerosol quantities and distribution throughout the atmosphere to help climate scientists monitor and predict climate change.

  • May 5, 2019: Hurricane Preparedness Week

    Hurricane Preparedness Week

    National Hurricane Preparedness Week is May 5-11, 2019. This is your time to prepare for a potential land-falling tropical storm or hurricane. On each day of this week, NOAA will provide the tips you'll need to get prepared for the hurricane season. Hurricane season begins May 15 in the eastern Pacific, and June 1 for the central Pacific and Atlantic. Visit the Hurricane Preparedness webpage to learn about hurricane hazards and safety and learn how to prepare for the upcoming hurricane season.


  • April 29, 2019: NOAA and Air Force Reserve ‘Hurricane Hunters’ to visit East Coast on preparedness tour

    Earth from geostationary orbit as seen by NASA’s ATS III on the first Earth Day in 1970 (upper left), GOES-3 in 1980 (upper right), GOES-11 in 2011 (lower left) and GOES-16 on Earth Day 2019 (April 22).
    U.S. Air Force Hurricane Hunter with crowd waiting to tour.

    In an effort to build a Weather-Ready Nation ahead of this year’s Atlantic hurricane season, NOAA hurricane experts will tour five eastern U.S. cities from May 6-10 to raise awareness of the importance of preparing for the upcoming hurricane season. At each stop, the public and media can take a tour of the “hurricane hunter” aircraft that fly around and directly into the eye of a storm — a NOAA WP-3D Orion aircraft and a U.S. Air Force Reserve WC-130J aircraft.

  • April 22, 2019: Celebrate Earth Day with these Geostationary Satellite Images

    Earth from geostationary orbit as seen by NASA’s ATS III on the first Earth Day in 1970 (upper left), GOES-3 in 1980 (upper right), GOES-11 in 2011 (lower left) and GOES-16 on Earth Day 2019 (April 22).
    Earth from geostationary orbit as seen by NASA’s ATS III on the first Earth Day in 1970 (upper left), GOES-3 in 1980 (upper right), GOES-11 in 2011 (lower left) and GOES-16 on Earth Day 2019 (April 22).

    Earth Day was born from former Wisconsin Sen. Gaylord Nelson’s desire to bring environmental issues to the forefront of the national political agenda. The first Earth Day, held on April 22, 1970, was followed by the creation of the U.S. Environmental Protection Agency (EPA) as well as the passage of the Clean Air, Clean Water and Endangered Species Acts. Today, more than 1 billion people will participate in Earth Day activities, raising awareness about critical environmental issues. In celebration of Earth Day, we’re taking a look at just how far satellite imagery has come since 1970.

  • April 22, 2019: 15 Great Reads for Earth Day

    Volcanic arcs and oceanic trenches
    NOAA celebrates Earth Day 2019.

    It’s that time again to reacquaint yourself with the health and well-being of our planet. We know what you’re thinking … but it’s not all bad news. NOAA scientists are using their expertise and innovation to help to solve Earth’s biggest challenges. Check out NOAA’s list of useful, fun and fascinating feature stories to pique your interest during Earth Day week, including one on NOAA’s newest operational satellite, GOES-17!

  • April 19, 2019: How Satellites Play a Pivotal Role in Monitoring the Health of Coral Reefs

    Volcanic arcs and oceanic trenches
    Coral bleaching process explained.

    Coral reefs are one of the most productive and biodiverse ecosystems in the world. They cover an estimated 110,000 square miles of the ocean floor and are home to more than 25 percent of marine species for at least some part of their lives. As part of this year’s Earth Day theme, “Protect Our Species,” we’re looking at how NOAA’s satellites are monitoring the effects of climate change on coral reefs around the globe. Using a combination of NOAA and international partners’ satellites, Coral Reef Watch can monitor ocean temperatures and identify areas at risk for coral bleaching. The Advanced Baseline Imager (ABI) aboard the GOES-R satellite series and NOAA-20’s Visible Infrared Imaging Radiometer Suite (VIIRS) provide data on ocean temperatures by looking at the infrared radiation that’s emitted from the ocean.

  • April 19, 2019: Hurricane Michael Upgraded to a Category 5 at Time of U.S. Landfall

    Volcanic arcs and oceanic trenches
    GOES-16 imagery of Hurricane Michael at time of landfall.

    Scientists at NOAA’s National Hurricane Center conducted a detailed post-storm analysis on all the data available for Hurricane Michael and have determined that the storm’s estimated intensity at landfall was 160 mph. This makes Michael a category 5 storm on the Saffir-Simpson Hurricane Wind Scale at the time of landfall on October 10, 2018, near Mexico Beach and Tyndall Air Force Base, Florida. Michael was the first hurricane to make landfall in the United States as a Category 5 since Hurricane Andrew in 1992, and only the fourth on record.

  • April 16, 2019: New Tools for Monitoring Volcanic Ash

    Volcanic arcs and oceanic trenches
    Volcanic arcs and oceanic trenches partly encircling the Pacific Basin form the so-called Ring of Fire, a zone of frequent earthquakes and volcanic eruptions. (Courtesy of USGS)

    Volcanic ash is a significant health, aviation, infrastructure and economic hazard. GOES East and GOES West observe a significant fraction of the most volcanically active region on Earth, known as the “Pacific Ring of Fire.” New capabilities from the GOES-16 and GOES-17 Advanced Baseline Imager and Geostationary Lightning Mapper provide improved volcanic hazard forecasting and monitoring through sophisticated new data products and automated detection tools. As forecasters gain more experience with new GOES-R Series datasets, the value of the measurements will increase significantly, resulting in safer and more efficient air transportation and a better understanding of volcanic processes and the complex relationship between volcanic emissions and weather and climate.

  • April 8, 2019: NOAA’s 2018 Business Brief

    NOAA’s improved performance in understanding and predicting extreme weather and water events is critical
    NOAA’s improved performance in understanding and predicting extreme weather and water events is critical.

    What does NOAA do for you? NOAA provides timely and reliable information based on sound science to communities and businesses every day. From daily weather forecasts, severe storm warnings, and climate monitoring to fisheries management, coastal restoration and supporting marine commerce, Americans rely on NOAA. GOES-16 and GOES-17 helped NOAA respond to extreme weather events in 2018 and contributed to improving NOAA’s observational infrastructure. View a story map version of NOAA’s 2018 Business Brief.

  • April 8, 2019: 1st Quarter 2019 GOES-R Program Newsletter

    GOES 17 animiation of Atmospheric river event
    GOES West water vapor imagery of bomb cyclone on March 13, 2019.

    The GOES-R Series Program quarterly newsletter for January – March 2019 is now available. GOES-17 is now operational as GOES West and we now have advanced geostationary satellite capabilities for more than half the globe. The program remains as busy as ever, with the team continuing to work on GOES-16 and 17 data product validation, the ground system server refresh, the GOES-T/U Advanced Baseline Imager cooling system redesign, and the build of our next two satellites in order to ensure continuity of GOES-R series operations for many years to come.

  • April 3, 2019: GOES-16 Monitors Record Flooding in the Midwest

    GOES 17 animiation of Atmospheric river event
    Flooding in southeastern South Dakota, eastern Nebraska, and western/central Iowa is seen in this ABI daily river flood map on March 16, 2019. Flooding is seen in yellow, green, orange and red. Brown is land, and dark blue is normal water levels within bodies of water. White is snow cover, with ice shown in cyan. Credit: Sanmei Li and Donglian Sun, George Mason University and SSEC/RealEarth

    The National Weather Service (NWS) is reporting an accelerated flood season across the Midwestern United States. On March 13, 2019, a winter storm system intensified and swept across much of the Central U.S., causing heavy rain, severe thunderstorms, snow, and blizzard conditions. The storm led to widespread flooding across parts of South Dakota, Nebraska and Iowa. New flood products, utilizing GOES-R Series and JPSS data, are helping forecasters better determine where and when flooding will occur and aiding officials in determining where to deploy resources during a flood event.

  • April 2, 2019: Case Study: Saving GOES-17

    GOES 17 animiation of Atmospheric river event
    GOES-17 ABI elevated detector temperatures (left) resulted in blurred images. The GOES team solved the issue by adjusting the voltage that controls the flow of photocurrent (right).

    Aerospace America published an article “Saving GOES-17,” authored by John Van Naarden, Advanced Baseline Imager chief engineer at Harris Corp., and Dan Lindsey, NOAA’s senior scientific advisor to the GOES-R Program. The article outlined the issues that were discovered with the cooling system on GOES-17’s primary instrument, the Advanced Baseline Imager, and efforts to improve performance of the instrument. Despite a thermal system operating at only about 5% of its capacity, ABI is now delivering more than 97% of its intended data, thanks to recovery efforts.

  • April 2, 2019: New ABI Scan Mode

    GOES 17 animiation of Atmospheric river event
    GOES-16 Advanced Baseline Imagery (ABI) band 13 infrared imagery from 1345 to 1610 UTC on April 2, 2019. Ten-minute flex mode scanning with 10-minute full disk imagery started at 1600 UTC.

    On April 2, 2019, the GOES-16 and GOES-17 Advanced Baseline Imagers began operating in a new scan mode, 10-minute flex mode. Ten-minute flex mode is very similar to the previous default flex mode with one exception: a full disk image is generated every 10 minutes instead of every 15 minutes. Contiguous U.S. (CONUS) for GOES-16/ Pacific U.S. (PACUS) for GOES-17 scans (3000 km by 50000 km) are still provided every five minutes, in addition to two mesoscale domains (1000 km by 1000 km) every 60 seconds (or one domain every 30 seconds if scanning the same domain). The new scan mode allows NOAA to match the full-disk scanning cadence of our international partners and will be critical to National Weather Service Weather Forecast Offices, National Centers, and the Volcanic Ash Advisory Centers in monitoring hazardous weather conditions and providing additional information in observationally limited areas.


  • March 20, 2019: NOAA’s Spring 2019 Flood and Climate Outlook

    NOAA’s 2019 Spring Flood Outlook map depicts the locations where there is a greater than 50% change of major, moderate or minor flooding March through May 2019.
    NOAA’s 2019 Spring Flood Outlook map depicts the locations where there is a greater than 50% change of major, moderate or minor flooding March through May 2019.

    According to NOAA's spring flood and climate outlook, a wet winter has primed much of the Great Plains for spring flooding in 2019, with major flooding likely along the Red River of the North, the Missouri, and the Mississippi Rivers. Moderate flood risk extends upstream of those rivers to their tributaries, including the lower Ohio, the Cumberland, and Tennessee Rivers. Minor flood risk covers nearly the entire country east of the Mississippi as well as parts of Washington, Oregon, and California.

  • March 19, 2019: GOES-16 and GOES-17 Used in Drought Monitoring and Prediction

    GOES-16 and GOES-17 Used in Drought Monitoring and Prediction
    Evaporative Stress Index (ESI) depiction of the 2012 flash drought event across the Midwestern U.S. Red and brown colors indicate extreme moisture stress. Credit: USDA

    Researchers are using satellite data to alert farmers and ranchers about impending flash droughts. Thermal infrared imagery from both the GOES-R Series satellites, as well as polar orbiting satellites like NOAA-20 and Suomi-NPP, is used to estimate evapotranspiration, which is a measure of how much water is being transferred from the land to the atmosphere through the soil and plants. Using a tool called the Evaporative Stress Index (ESI), it’s now possible to deliver a probabilistic forecast, like the ones we get from the National Weather Service, a month or so ahead of the onset of a flash drought. New tools and better forecasts give the agricultural sector even more options to deal with drought and can help mitigate their future impact.

  • March 08, 2019: 2018 NOAA Science Report

    GOES 17 animiation of Atmospheric river event
    GOES-16 image of Hurricane Harvey approaching the Texas Coast, featured in the 2018 NOAA Science Report.

    The 2018 NOAA Science Report is now available. The report highlights NOAA’s research accomplishments and the vital service’s the agency provides to Americans every day. The science report spans the entire range of NOAA’s mission, and the 72 stories featured in this year’s report represent a selection of NOAA’s research and development accomplishments. The GOES-R mission is highlighted in several areas of the report, including the GOES-S (17) launch, lightning detection, solar imaging and space weather monitoring, fire detection and monitoring, flood mapping, and hurricane tracking.

  • March 5, 2019: NOAA Talks Hurricanes and Climate at National Press Club

    From left, Jeremy Gregory, Ph.D., Gerry Bell, Ph.D, and moderator Ferdous Al-Faruque at the National Press Club on March 5, 2019.
    From left, Jeremy Gregory, Ph.D., Gerry Bell, Ph.D, and moderator Ferdous Al-Faruque at the National Press Club on March 5, 2019.

    Each year, NOAA helps the United States prepare for hurricanes by issuing a seasonal outlook before the official start of the season on June 1. Gerry Bell, Ph.D., from NOAA’s Climate Prediction Center, spoke to reporters at the National Press Club on March 5 about how NOAA creates this outlook and the climate drivers that fuel or suppress a hurricane season. Bell said the Atlantic remains in a period of increased hurricane activity that began in 1995 and generates more, stronger, and longer-lived storms. Bell also identified several global climate patterns that can drive hurricane development within that high-activity era. The Atlantic Multi-decadal Oscillation (AMO) influences hurricane seasons over several decades and the El Nino/Southern Oscillation (ENSO) drives year-to-year variability. “By predicting key climate patterns, we can often predict these regional hurricane-controlling conditions, and therefore predict the strength of the upcoming hurricane season,” he said.

  • March 4, 2019: A Long View of California’s Climate: Study Examines Centuries of Data to Understand Climate-Wildfire Links

    From left, Jeremy Gregory, Ph.D., Gerry Bell, Ph.D, and moderator Ferdous Al-Faruque at the National Press Club on March 5, 2019.
    The North Pacific Jet (NPJ) travels eastward at variable wind speeds and directions toward California at an altitude of about 11 kilometers above the ocean’s surface. The strength and position of the winds take on importance in relation to the amount and intensity of moisture the jet stream delivers. This graphic represents a winter-average path of entry to California that could produce a very-wet, low-fire season in the state. Courtesy of NOAA NCEI.

    Deadly severe wildfires in California have scientists scrutinizing the underlying factors that could influence future extreme events. Using climate simulations and paleoclimate data dating back to the 16th century, a recent study looks closely at long-term upper-level wind and related moisture patterns to find clues. New research published by the Proceedings of the National Academy of Sciences USA examines jet stream and moisture patterns in California over a centuries-long time period—1571 to 2013. The work provides a stronger foundation and a longer-term perspective for evaluating regional natural hazards within California and the economic risks to one of the world's largest economies.


  • February 20, 2019: Keeping an Eye on Rivers in the Sky

    GOES 17 animiation of Atmospheric river event

    Atmospheric rivers are long, narrow conveyor belts of moisture that move through the atmosphere. Strong atmospheric rivers can deliver enormous amounts of rain and high-elevation snow in California, Pacific Northwest, and Alaska, especially during the winter months. The GOES-R Series Advanced Baseline Imager provides improved detection and monitoring of atmospheric river events. Understanding and anticipating the role of atmospheric rivers is important for water and emergency management on the West Coast, particularly in California. GOES-17, recently designated NOAA’s GOES West operational satellite, is positioned to keep an eye on the western U.S., Alaska and Pacific Ocean, and provide advanced monitoring of atmospheric rivers among other weather phenomena and hazards.

  • February 14, 2019: NOAA Satellites Helped Rescue 340 People in 2018

     NOAA Satellites Helped Rescue 340 People in 2018
    SARSAT rescues for 2018.

    In 2018, the NOAA Search and Rescue Satellite Aided Tracking (SARSAT) system helped save 340 lives with the aid of NOAA satellites like GOES-16. In addition to carrying instruments for monitoring our atmosphere, land and oceans for severe weather and other hazards, GOES-16 also carries a SARSAT transponder to help locate people in distress. This transponder provides the capability to immediately detect distress signals from emergency beacons and relay them to ground stations. In turn, this signal is routed to a SARSAT mission control center and then sent to a rescue coordination center, which dispatches a search and rescue team to the location of the distress.

  • February 12, 2019: GOES-17 is Now Operational as NOAA’s GOES West!

     GOES-17 is Now Operational as NOAA’s GOES West
    GOES-17 is now operational as NOAA’s GOES West!

    GOES-17 is now operational as NOAA’s GOES West. In its new role, GOES-17 is providing faster, more accurate, and more detailed observations for detecting and monitoring Pacific storm systems, fog, wildfires, and other weather phenomena that affect the western United States, Alaska, and Hawaii. Located at 137.2 degrees west longitude, GOES-17 replaces GOES-15 as NOAA’s operational GOES West. GOES-17 joins GOES-16, in operations as NOAA’s GOES East, in delivering high-resolution visible and infrared imagery and lightning observations of more than half the globe – from the west coast of Africa to New Zealand and from near the Arctic Circle to the Antarctic Circle. View GOES-17 operational imagery.

  • February 6, 2019: Assessing the Global Climate in 2018

    Assessing the Global Climate in 2018
    The United States experienced 14 billion-dollar weather disasters in 2018, which resulted in the deaths of at least 247 people and approximately $91 billion in damage. (NOAA NCEI)

    For the globe, 2018 became the fourth warmest year on record and the United States experienced 14 billion-dollar weather and climate disasters. These are findings from the 2018 Annual Global Climate Report from NOAA National Centers for Environmental Information, which is part of the suite of climate services NOAA provides to government, business, academia and the public to support informed decision-making. Earth’s long-term warming trend continued in 2018 as persistent warmth across large swaths of land and ocean resulted in the globe’s fourth hottest year in NOAA’s 139-year climate record. The year ranks just behind 2016 (warmest), 2015 (second warmest) and 2017 (third warmest). In separate analyses of global temperatures, scientists from NASA, the United Kingdom Met Office and the World Meteorological Organization also reached the same heat ranking.

  • February 5, 2019: GOES East Sees Partial Solar Eclipse

    Shadow of the moon as it passes in front of the sun on February 5.

    GOES East captured a partial solar eclipse on February 5, 2019. In this animation from the satellite’s Solar Ultraviolet Imager (SUVI) instrument, you can see the moon passing across the sun. A partial eclipse occurs when the sun and moon are not exactly in line with the Earth and the moon only partially obscures the sun.

  • February 5, 2019: GOES-16 Detects Meteor over Cuba

    Meteor over Cuba captured by the GOES-16 GLM instrument.

    On February 1, 2019, at 1:17 p.m. EST, the GOES-16 Geostationary Lightning Mapper (GLM) detected a bright meteor over northwestern Cuba. The meteorite landed near Viñales, Pinar del Río in western Cuba. While designed for mapping lightning flashes, GLM can observe large meteors anywhere throughout its coverage area. The instrument takes 500 images of Earth every second, allowing it to measure the shape of a meteor “light curve,” or the change in brightness of a meteor with time, with millisecond precision.

    The GOES-16 Advanced Baseline Imager also detected the airborne debris cloud as it drifted northeastward then eastward for about an hour after the impact. The signatures in the split cloud top phase and split window imagery were due to the presence of mineral dust particles within the debris cloud — the emissivity properties of dust affects the sensed brightness temperatures differently for various infrared spectral bands. The cirrus spectral band is useful for detecting the scattering of light by airborne particles such as ice crystals, volcanic ash, smoke or dust. The debris cloud was also casting a subtle shadow onto the surface, as seen in the visible imagery.


  • January 31, 2019: The latest GOES-R Series Quarterly Newsletter is now available for download

    GOES-17 Shares First Images of Hawaii
    GOES-17 Shares First Images of Hawaii

    The GOES-R Series Program quarterly newsletter for the time period October – December 2018 is now available. GOES-17 completed its Handover Readiness Review and the program handed the satellite over to NOAA’s Office of Satellite and Product Operations. GOES-17 is now in its operational location at 137.2 west and is providing stunning imagery of the U.S. West Coast, Alaska, Hawaii, and even New Zealand. The satellite is ready for operations as NOAA’s GOES West.

  • January 28, 2019: Joint NOAA/AMS/EUMETSAT Satellite Conference Call for Abstracts

    This conference merges three satellite conferences into one major event. NOAA, the American Meteorological Society (AMS) Satellite Meteorology, Oceanography, and Climatology (SatMetOC), and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) will hold a joint conference September 29 – October 4, 2019, in Boston. Abstract submissions are due on March 1, 2019.